視頻 BV1ZE411q7iR 與 BV1R4411T7hU 解析
題1.
S
=1/2absinC
=1/2absinC(a2+b2-c2)/(2ab)/cosC
=tanC(a2+b2-c2)/4
題2.
設(shè)漸近線與x軸夾角為θ
有tanθ=b/a
∠AOB=2θ
若A為直角頂點
其橫坐標(biāo)之比
即OA/OB
若b/a<1
即b<a
OA/OB
=cos(2θ)
=(1-tan2θ)/(1+tan2θ)
=(1-b2/a2)/(1+b2/a2)
=(a2-b2)/(a2+b2)
若b/a>1
即b>a
OA/OB
=cos(2θ)
=(1-tan2θ)/(1+tan2θ)
=(1-a2/b2)/(1+a2/b2)
=(b2-a2)/(a2+b2)
綜述
橫坐標(biāo)之比為
|a2-b2|/(a2+b2)
若B為直角頂點
則為其倒數(shù)
即(a2+b2)/|a2-b2|
故判定選項D
標(biāo)簽: