最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

古明地戀的數(shù)學(xué)科普——向前—向后數(shù)學(xué)歸納法

2022-11-19 23:50 作者:量子少女-古明地戀  | 我要投稿

前言:本文適合學(xué)習(xí)過基本不等式并且掌握較為熟練的讀者.

一、什么是向前—向后(Forward and Backward)數(shù)學(xué)歸納法

考慮到部分讀者并不熟悉數(shù)學(xué)歸納法(因為目前的中學(xué)教材已經(jīng)淡化這部分內(nèi)容),所以在此給出數(shù)學(xué)歸納法的最基本形式:

當(dāng)一個關(guān)于正整數(shù)n的命題滿足以下條件時:

1.n%3D1時命題成立;

2.n%3Dk時命題成立可推得n%3Dk%2B1時命題成立.

可證得命題對任意正整數(shù)n成立.

上述形式也稱作第一數(shù)學(xué)歸納法.事實上,數(shù)學(xué)歸納法有多種變形形式.如當(dāng)n%3Dk替換為n%5Cleqslant%20k時的第二數(shù)學(xué)歸納法.

此次所述的向前—向后數(shù)學(xué)歸納法也是數(shù)學(xué)歸納法的變形形式.其形式如下:

當(dāng)一個命題滿足如下條件時:

1.命題對無窮多個自然數(shù)n成立;

2.n%3Dk%2B1時命題成立可推得n%3Dk時命題成立.

可證得命題對任意正整數(shù)n成立.

二、向前—向后數(shù)學(xué)歸納法的應(yīng)用實例(不等式的證明)

1.n元算術(shù)—幾何平均值(AM—GM)不等式

%5Cdfrac%7B%5Csum_%7Bi%3D1%7D%5E%7Bn%7Da_i%7D%7Bn%7D%5Cgeqslant%20%5Csqrt%5Bn%5D%7B%5Cprod_%7Bi%3D1%7D%5E%7Bn%7Da_i%7D(a_i%3E0),當(dāng)且僅當(dāng)a_1%3Da_2%3D%5Ccdots%3Da_n時等號成立.

證明如下:

n%3D2時,即是讀者在中學(xué)階段學(xué)習(xí)過2元形式的均值不等式:

%5Cfrac%7Ba%2Bb%7D%7B2%7D%5Cgeqslant%20%5Csqrt%7Bab%7D%20(a%2Cb%3E0),當(dāng)且僅當(dāng)a=b時等號成立.

此處證明從略.

設(shè)命題對n%3D2%5Ek成立,則n%3D2%5E%7Bk%2B1%7D時,


因為%5Cdfrac%7B%5Csum_%7Bi%3D1%7D%5E%7B2%5E%7Bk%2B1%7D%7Da_i%7D%7B2%5E%7Bk%2B1%7D%7D%3D%5Cdfrac%7B%5Cdfrac%7B%5Csum_%7Bi%3D1%7D%5E%7B2%5E%7Bk%7D%7Da_i%7D%7B2%5E%7Bk%7D%7D%2B%5Cdfrac%7B%5Csum_%7Bi%3D2%5E%7Bk%7D%2B1%7D%5E%7B2%5E%7Bk%2B1%7D%7Da_i%7D%7B2%5E%7Bk%7D%7D%7D%7B2%7D%5Cgeqslant%20%5Cdfrac%7B%5Csqrt%5B2%5Ek%5D%7B%5Cprod_%7Bi%3D1%7D%5E%7B2%5En%7Da_i%7D%2B%5Csqrt%5B2%5Ek%5D%7B%5Cprod_%7Bi%3D2%5Ek%2B1%7D%5E%7B2%5E%7Bk%2B1%7D%7Da_i%7D%7D%7B2%7D%5Cgeqslant%20%5Csqrt%5B2%5E%7Bk%2B1%7D%5D%7B%5Cprod_%7Bi%3D1%7D%5E%7B2%5E%7Bk%2B1%7D%7Da_i%7D


所以命題對n%3D2%5E%7Bk%2B1%7D也成立.

假設(shè)命題對n%3Dk%2B1成立,則n%3Dk時,

%5Cdfrac%7B%5Csum_%7Bi%3D1%7D%5E%7Bk%7Da_i%7D%7Bk%7D%3D%5Cdfrac%7B1%7D%7Bk%2B1%7D(%5Csum_%7Bi%3D1%7D%5E%7Bk%7Da_i%2B%5Cdfrac%7B1%7D%7Bk%7D%5Csum_%7Bi%3D1%7D%5E%7Bk%7Da_i)%5Cgeqslant%20%5Csqrt%5Bk%2B1%5D%7B(%5Cprod_%7Bi%3D1%7D%5E%7Bk%7Da_i)(%5Cdfrac%7B1%7D%7Bk%7D%5Csum_%7Bi%3D1%7D%5E%7Bk%7Da_i)%7D

從而有

%5Cdfrac%7B%5Csum_%7Bi%3D1%7D%5E%7Bk%7Da_i%7D%7Bk%7D%5Cgeqslant%20%5Csqrt%5Bk%5D%7B%5Cprod_%7Bi%3D1%7D%5E%7Bk%7Da_i%7D

綜上所述,原不等式得證.

2.樊畿(Fan Ky)不等式

%5Cdfrac%7B%5Cprod_%7Bi%3D1%7D%5E%7Bn%7Dx_i%7D%7B(%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dx_i)%5En%7D%5Cleqslant%20%5Cdfrac%7B%5Cprod_%7Bi%3D1%7D%5E%7Bn%7D(1-x_i)%7D%7B%5B%5Csum_%7Bi%3D1%7D%5E%7Bn%7D(1-x_i)%5D%5En%7D%20%EF%BC%880%3Cx_i%5Cleqslant%20%5Cdfrac%7B1%7D%7B2%7D)

n=1時,顯然成立;n=2時,即證%5Cdfrac%7Bx_1x_2%7D%7B(x_1%2Bx_2)%5E2%7D%5Cleqslant%20%5Cdfrac%7B(1-x_1)(1-x_2)%7D%7B(1-x_1%2B1-x_2)%5E2%7D

也就是(x_1-x_2)%5E2%20(1-x_1-x_2)%5Cgeqslant%200,而這是顯然的.

設(shè)結(jié)論對n%3D2%5Ek成立,即%5Cdfrac%7B%5Cprod_%7Bi%3D1%7D%5E%7B2%5Ek%7Dx_i%7D%7B(%5Csum_%7Bi%3D1%7D%5E%7B2%5Ek%7Dx_i)%5En%7D%5Cleqslant%20%5Cdfrac%7B%5Cprod_%7Bi%3D1%7D%5E%7B2%5Ek%7D(1-x_i)%7D%7B%5B%5Csum_%7Bi%3D1%7D%5E%7B2%5Ek%7D(1-x_i)%5D%5E%7B2%5Ek%7D%7D也就是%5Cdfrac%7B%5Cprod_%7Bi%3D1%7D%5E%7B2%5Ek%7Dx_i%7D%7B%5Cprod_%7Bi%3D1%7D%5E%7B2%5Ek%7D(1-x_i)%7D%5Cleqslant%20%5Cdfrac%7B(%5Csum_%7Bi%3D1%7D%5E%7B2%5Ek%7Dx_i)%5E%7B2%5Ek%7D%7D%7B%5B%5Csum_%7Bi%3D1%7D%5E%7B2%5Ek%7D(1-x_i)%5D%5E%7B2%5Ek%7D%7D

n%3D2%5E%7Bk%2B1%7D時,%5Cdfrac%7B%5Cprod_%7Bi%3D1%7D%5E%7B2%5E%7Bk%2B1%7D%7Dx_i%7D%7B%5Cprod_%7Bi%3D1%7D%5E%7B2%5E%7Bk%2B1%7D%7D(1-x_i)%7D%3D%5Cdfrac%7B%5Cprod_%7Bi%3D1%7D%5E%7B2%5Ek%7Dx_i%7D%7B%5Cprod_%7Bi%3D1%7D%5E%7B2%5Ek%7D(1-x_i)%7D%20%5Cdfrac%7B%5Cprod_%7Bi%3D2%5Ek%2B1%7D%5E%7B2%5E%7Bk%2B1%7D%7Dx_i%7D%7B%5Cprod_%7Bi%3D2%5Ek%2B1%7D%5E%7B2%5E%7Bk%2B1%7D%7D(1-x_i)%7D%5Cleqslant%20%5Cdfrac%7B(%5Csum_%7Bi%3D1%7D%5E%7B2%5Ek%7Dx_i)%5E%7B2%5Ek%7D%7D%7B%5B%5Csum_%7Bi%3D1%7D%5E%7B2%5Ek%7D(1-x_i)%5D%5E%7B2%5Ek%7D%7D%20%5Cdfrac%7B(%5Csum_%7Bi%3D2%5Ek%2B1%7D%5E%7B2%5E%7Bk%2B1%7D%7Dx_i)%5E%7B2%5Ek%7D%7D%7B%5B%5Csum_%7Bi%3D2%5Ek%2B1%7D%5E%7B2%5E%7Bk%2B1%7D%7D(1-x_i)%5D%5E%7B2%5Ek%7D%7D%20

要證明上述式子成立,即證(%5Cdfrac%7Ba%7D%7B2%5Ek-a%7D%20%5Cdfrac%7Bb%7D%7B2%5Ek-b%7D)%5E%7B2%5Ek%7D%5Cleqslant%20(%5Cdfrac%7Ba%2Bb%7D%7B2%5E%7Bk%2B1%7D-a-b%7D)%5E%7B2%5E%7Bk%2B1%7D%7D

也就是%20%5Cdfrac%7Bab%7D%7B(2%5Ek-a)(2%5Ek-b)%7D%5Cleqslant%20(%5Cdfrac%7Ba%2Bb%7D%7B2%5E%7Bk%2B1%7D-a-b%7D)%5E2

(2%5Ek-a-b)(a-b)%5E2%5Cgeqslant%200,由于0%3Ca%2Cb%5Cleqslant%202%5E%7Bk-1%7D,此式顯然成立.

設(shè)結(jié)論對n=k+1成立,即%5Cdfrac%7B%5Cprod_%7Bi%3D1%7D%5E%7Bk%2B1%7Dx_i%7D%7B(%5Csum_%7Bi%3D1%7D%5E%7Bk%2B1%7Dx_i)%5E%7Bk%2B1%7D%7D%5Cleqslant%20%5Cdfrac%7B%5Cprod_%7Bi%3D1%7D%5E%7Bk%2B1%7D(1-x_i)%7D%7B%5B%5Csum_%7Bi%3D1%7D%5E%7Bk%2B1%7D(1-x_i)%5D%5E%7Bk%2B1%7D%7D

考慮A%3D%5Cdfrac%7B1%7D%7Bk%7D%20%5Csum_%7Bi%3D1%7D%5E%7Bk%2B1%7Dx_i,則(%5Cdfrac%7Bx_1%2Bx_2%2B%5Ccdots%2Bx_k%2BA%7D%7B(1-x_1)%2B(1-x_2)%2B%5Ccdots%2B(1-x_k)%2BA%7D)%5E%7Bk%2B1%7D%5Cgeqslant%20%5Cdfrac%7Bx_1x_2%5Ccdots%20x_kA%7D%7B(1-x_1)(1-x_2)%5Ccdots(1-x_k)(1-A)%7D

由于(%5Cdfrac%7BA%7D%7B1-A%7D)%5E%7Bk%2B1%7D%3D(%5Cdfrac%7Bx_1%2Bx_2%2B%5Ccdots%2Bx_k%2BA%7D%7B(1-x_1)%2B(1-x_2)%2B%5Ccdots%2B(1-x_k)%2B(1-A)%7D)%5E%7Bk%2B1%7D%5Cgeqslant%20%5Cdfrac%7Bx_1x_2%5Ccdots%20x_kA%7D%7B(1-x_1)(1-x_2)%5Ccdots(1-x_k)(1-A)%7D

所以(%5Cdfrac%7BA%7D%7B1-A%7D)%5Ek%5Cgeqslant%20%5Cdfrac%7Bx_1x_2%5Ccdots%20x_k%7D%7B(1-x_1)(1-x_2)%5Ccdots(1-x_k)%7D

從而結(jié)論對n=k成立.

參考資料:

[1]謝惠民.數(shù)學(xué)分析習(xí)題課講義.(上冊)北京:高等教育出版社,2003.

[2]陳計.代數(shù)不等式.上海:上海科技教育出版社,2009.



古明地戀的數(shù)學(xué)科普——向前—向后數(shù)學(xué)歸納法的評論 (共 條)

使用qq登录你需要登录后才可以评论。
柳州市| 平乡县| 万源市| 望江县| 尼木县| 阳江市| 方正县| 波密县| 牟定县| 漳浦县| 板桥市| 增城市| 读书| 连江县| 岚皋县| 会泽县| 类乌齐县| 开阳县| 辽阳市| 齐齐哈尔市| 巫溪县| 长顺县| 萨嘎县| 常山县| 西充县| 林周县| 弋阳县| 万山特区| 祁阳县| 恩施市| 盐源县| 浦城县| 峨山| 唐海县| 盱眙县| 广宁县| 潍坊市| 辽源市| 西昌市| 常山县| 札达县|