最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

復(fù)旦大學(xué)謝啟鴻高等代數(shù)每周一題[2021A06]參考解答

2021-11-06 18:09 作者:CharlesMa0606  | 我要投稿

本文是本人給出的2021年復(fù)旦大學(xué)謝啟鴻高等代數(shù)的每周一題[問題2021A06]的解答

題目來自于復(fù)旦大學(xué)謝啟鴻教授在他的博客提供的每周一題練習(xí)

(鏈接:https://www.cnblogs.com/torsor/p/15329047.html)

本文僅供學(xué)習(xí)交流,如有錯誤懇請指正!

[問題2021A06]若n階實(shí)方陣P滿足PP%5E%5Cprime%3DI_n,則稱P為正交陣.設(shè)S為n階實(shí)反對稱陣全體構(gòu)成的集合,T%3D%5C%7BP%7CP%E4%B8%BAn%E9%98%B6%E6%AD%A3%E4%BA%A4%E9%98%B5%E4%B8%94%E6%BB%A1%E8%B6%B3%20In%2BP%E5%8F%AF%E9%80%86%5C%7D.

(1)對任意的A%5Cin%20S, 由高代白皮書的例2.33可知I_n%2BA可逆,定義%5Cvarphi%5Cleft(A%5Cright)%3D%5Cleft(I_n-A%5Cright)%5Cleft(I_n%2BA%5Cright)%5E%7B-1%7D, 證明:%5Cvarphi是從S到T的映射.

(2)對任意的P%5Cin%20T,定義%5Cpsi%5Cleft(P%5Cright)%3D%5Cleft(In-P%5Cright)%5Cleft(In%2BP%5Cright)%5E%7B-1%7D,證明:%5Cpsi是從T到S的映射.

(3)證明:%5Cpsi%5Cvarphi%3DId_S%2C%5Cvarphi%5Cpsi%3DId_T,其中Id_S%2CId_T表示S,T上的恒等映射,即%5Cvarphi%2C%5Cpsi實(shí)現(xiàn)了集合S與T之間的一一對應(yīng).

(4)設(shè)n階實(shí)反對稱陣

A%3D%5Cleft(%5Cbegin%7Bmatrix%7D0%261%261%26%5Ccdots%261%5C%5C-1%260%261%26%5Ccdots%261%5C%5C-1%26-1%260%26%5Ccdots%261%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5C-1%26-1%26-1%26%5Ccdots%260%5C%5C%5Cend%7Bmatrix%7D%5Cright)

試求%5Cvarphi%5Cleft(A%5Cright)%3D%5Cleft(In-A%5Cright)%5Cleft(In%2BA%5Cright)%5E%7B-1%7D.

(1)對任意的A%5Cin%20S,有:

%5Cvarphi%5Cleft(A%5Cright)%3D%5Cleft(I_n-A%5Cright)%5Cleft(I_n%2BA%5Cright)%5E%7B-1%7D%2C%5Cvarphi%5Cleft(A%5Cright)%5E%5Cprime%3D%5Cleft(%5Cleft(I_n-A%5Cright)%5Cleft(I_n%2BA%5Cright)%5E%7B-1%7D%5Cright)%5E%5Cprime%3D%5Cleft(I_n-A%5Cright)%5E%7B-1%7D%5Cleft(I_n%2BA%5Cright)

從而

%5Cvarphi%5Cleft(A%5Cright)%5E%5Cprime%5Cvarphi%5Cleft(A%5Cright)%3D%5Cleft(I_n-A%5Cright)%5E%7B-1%7D%5Cleft(I_n%2BA%5Cright)%5Cleft(I_n-A%5Cright)%5Cleft(I_n%2BA%5Cright)%5E%7B-1%7D%3D%5Cleft(I_n-A%5Cright)%5E%7B-1%7D%5Cleft(I_n-A%5Cright)%5Cleft(I_n%2BA%5Cright)%5Cleft(I_n%2BA%5Cright)%5E%7B-1%7D%3DI_n

并且I_n%2B%5Cvarphi%5Cleft(A%5Cright)%3DI_n%2B%5Cleft(I_n-A%5Cright)%5Cleft(I_n%2BA%5Cright)%5E%7B-1%7D%3D2%5Cleft(I_n%2BA%5Cright)%5E%7B-1%7D是可逆陣.

從而%5Cvarphi%5Cleft(A%5Cright)%5Cin%20T%2C%5Cforall%20A%5Cin%20S,因此%5Cvarphi是從S到T的映射.

(2)對任意的P%5Cin%20T,有:

%5Cpsi%5Cleft(P%5Cright)%3D%5Cleft(I_n-P%5Cright)%5Cleft(I_n%2BP%5Cright)%5E%7B-1%7D%2C%5Cpsi%5Cleft(P%5Cright)%5E%5Cprime%3D%5Cleft(I_n%2BP%5E%5Cprime%5Cright)%5E%7B-1%7D%5Cleft(I_n-P%5E%5Cprime%5Cright)

%5Cpsi%5Cleft(P%5Cright)%2B%5Cpsi%5Cleft(P%5Cright)%5E%5Cprime%3D%5Cleft(I_n%2BP%5E%5Cprime%5Cright)%5E%7B-1%7D%5Cleft(I_n-P%5E%5Cprime%5Cright)%2B%5Cleft(I_n-P%5Cright)%5Cleft(I_n%2BP%5Cright)%5E%7B-1%7D

%3D%5Cleft(I_n%2BP%5E%5Cprime%5Cright)%5E%7B-1%7D%5Cleft(%5Cleft(I_n-P%5E%5Cprime%5Cright)%5Cleft(I_n%2BP%5Cright)%2B%5Cleft(I_n%2BP%5E%5Cprime%5Cright)%5Cleft(I_n-P%5Cright)%5Cright)%5Cleft(In%2BP%5Cright)%5E%7B-1%7D

%3D%5Cleft(In-P%5Cright)%5E%7B-1%7D%5Cleft(I_n%2BP-P%5E%5Cprime-I_n%2BI_n%2BP%5E%5Cprime-P-I_n%5Cright)%5Cleft(In%2BP%5Cright)%5E%7B-1%7D%3DO.

從而%5Cpsi%5Cleft(P%5Cright)%5Cin%20S%2C%5Cforall%20P%5Cin%20T,因此%5Cpsi是從T到S的映射.

(3)對于任意的A%5Cin%20S%2CP%5Cin%20T,有

%5Cpsi%5Cvarphi%5Cleft(A%5Cright)%3D%5Cleft(I_n-%5Cvarphi%5Cleft(A%5Cright)%5Cright)%5Cleft(I_n%2B%5Cvarphi%5Cleft(A%5Cright)%5Cright)%5E%7B-1%7D%3D%5Cleft(I_n-%5Cleft(I_n-A%5Cright)%5Cleft(I_n%2BA%5Cright)%5E%7B-1%7D%5Cright)%5Cleft(I_n%2B%5Cleft(I_n-A%5Cright)%5Cleft(I_n%2BA%5Cright)%5E%7B-1%7D%5Cright)%5E%7B-1%7D%3D%5Cleft(%5Cleft(I_n%2BA%5Cright)-%5Cleft(I_n-A%5Cright)%5Cright)%5Cleft(I_n%2BA%5Cright)%5E%7B-1%7D%5Cleft%5B%5Cleft(%5Cleft(I_n%2BA%5Cright)%2B%5Cleft(I_n-A%5Cright)%5Cright)%5Cleft(I_n%2BA%5Cright)%5E%7B-1%7D%5Cright%5D%5E%7B-1%7D%3D2A%5Cleft(I_n%2BA%5Cright)%5E%7B-1%7D%5Cleft(2%5Cleft(I_n%2BA%5Cright)%5E%7B-1%7D%5Cright)%5E%7B-1%7D%3DA.

%5Cvarphi%5Cpsi%5Cleft(P%5Cright)%3D%5Cleft(I_n-%5Cpsi%5Cleft(P%5Cright)%5Cright)%5Cleft(I_n%2B%5Cpsi%5Cleft(P%5Cright)%5Cright)%5E%7B-1%7D%3D%5Cleft(I_n-%5Cleft(In-P%5Cright)%5Cleft(In%2BP%5Cright)%5E%7B-1%7D%5Cright)%5Cleft(I_n%2B%5Cleft(In-P%5Cright)%5Cleft(In%2BP%5Cright)%5E%7B-1%7D%5Cright)%5E%7B-1%7D%3D%5Cleft(%5Cleft(I_n%2BP%5Cright)-%5Cleft(I_n-P%5Cright)%5Cright)%5Cleft(I_n%2BP%5Cright)%5E%7B-1%7D%5Cleft%5B%5Cleft(%5Cleft(I_n%2BP%5Cright)%2B%5Cleft(I_n-P%5Cright)%5Cright)%5Cleft(I_n%2BP%5Cright)%5E%7B-1%7D%5Cright%5D%5E%7B-1%7D

%3D2P%5Cleft(I_n%2BP%5Cright)%5E%7B-1%7D%5Cleft(2%5Cleft(I_n%2BP%5Cright)%5E%7B-1%7D%5Cright)%5E%7B-1%7D%3DP.

因此%5Cpsi%5Cvarphi%3DId_S%2C%5Cvarphi%5Cpsi%3DId_T,即%5Cvarphi%2C%5Cpsi實(shí)現(xiàn)了集合S與T之間的一一對應(yīng).

(4)用初等變換法求逆陣不難得到:

%5Cleft(In%2BA%5Cright)%5E%7B-1%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft(%5Cbegin%7Bmatrix%7D1%26-1%260%26%5Ccdots%260%5C%5C0%261%26-1%26%5Ccdots%260%5C%5C0%260%261%26%5Ccdots%260%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5C1%260%260%26%5Ccdots%261%5C%5C%5Cend%7Bmatrix%7D%5Cright)

從而

%5Cvarphi%5Cleft(A%5Cright)%3D-%5Cfrac%7B1%7D%7B2%7D%5Cleft(%5Cbegin%7Bmatrix%7D-1%261%261%26%5Ccdots%261%5C%5C-1%26-1%261%26%5Ccdots%261%5C%5C-1%26-1%26-1%26%5Ccdots%261%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5C-1%26-1%26-1%26%5Ccdots%26-1%5C%5C%5Cend%7Bmatrix%7D%5Cright)%5Cleft(%5Cbegin%7Bmatrix%7D1%26-1%260%26%5Ccdots%260%5C%5C0%261%26-1%26%5Ccdots%260%5C%5C0%260%261%26%5Ccdots%260%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5C1%260%260%26%5Ccdots%261%5C%5C%5Cend%7Bmatrix%7D%5Cright)%3D%5Cleft(%5Cbegin%7Bmatrix%7D0%26-1%260%26%5Ccdots%260%5C%5C0%260%26-1%26%5Ccdots%260%5C%5C0%260%260%26%5Ccdots%260%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5C1%260%260%26%5Ccdots%260%5C%5C%5Cend%7Bmatrix%7D%5Cright).%5BQ.E.D%5D%0A%0A

注(1)本題主要運(yùn)用了一個兩邊分別提取公因式的辦法,主要想法是進(jìn)行某種意義上運(yùn)算的交換,從而簡化計算。

(2)文末附上圖片格式的解法,有需要的讀者可以自行取用,僅供學(xué)習(xí)交流


復(fù)旦大學(xué)謝啟鴻高等代數(shù)每周一題[2021A06]參考解答的評論 (共 條)

分享到微博請遵守國家法律
交口县| 龙里县| 东乌珠穆沁旗| 晋江市| 平阳县| 青浦区| 七台河市| 邹城市| 资兴市| 乌苏市| 佳木斯市| 临猗县| 黄骅市| 昌都县| 商河县| 清徐县| 曲靖市| 肥城市| 洪雅县| 化州市| 朔州市| 南昌市| 长宁县| 江都市| 扬州市| 来宾市| 乌拉特后旗| 郓城县| 赤壁市| 哈巴河县| 朝阳市| 桦甸市| 鱼台县| 密云县| 高淳县| 建瓯市| 凤城市| 浑源县| 龙海市| 扶余县| 盘锦市|