最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

喝茶養(yǎng)生是真的!東方綠茶 VS 西方紅茶,誰更抗衰?

2023-02-06 12:25 作者:時光派官方  | 我要投稿



寒風(fēng)漸起,坐在暖暖冬陽下,捧著一杯茶,看著裊裊上升的霧氣啜上一小口,多是一件美事啊!只是,有的人捧的是綠茶,有的人捧的是紅茶,更多的人捧的則是焦糖奶茶半糖加珍珠加布丁加芋圓……(巧了,派派手里捧的正是這個)


茶是大家公認(rèn)的“健康飲品”,但是喝茶究竟有哪些好處?又是哪種茶最好?這場“茶藝競技賽”里,從最常見的綠茶到最人氣的奶茶都在躍躍欲試,下面就請看,年度茶藝大賞,pick你心中的茶類“南波萬”!



據(jù)記載,早在公元前2737年左右,茶已經(jīng)首次被我國人作為飲料或藥物消費[1],而經(jīng)過五千年的發(fā)展至今,茶早已沖出國界走向國際,得到了全世界人的喜愛?,F(xiàn)如今,全世界每年生產(chǎn)和消費約30億公斤茶,均攤到每個人每天的消耗量高達(dá)120ml[2]。

在這個漫長的發(fā)展過程中,茶早已不是簡單的“東方樹葉”,茶的概念也變得多樣起來。茶葉、抹茶、花茶、草藥茶、甚至是奶茶,都可以屬于“茶”的范疇。

看遍紛繁復(fù)雜的茶種類,研究最多、相關(guān)報道最詳實的還是最傳統(tǒng)的茶葉。降低心腦血管疾病及神經(jīng)退行性疾病的風(fēng)險、降低肥胖和糖尿病風(fēng)險、改善免疫等[3],茶葉促進人類健康的表現(xiàn)不可勝舉,就讓我們從生物學(xué)的角度稍加闡釋。


No.1

降低死亡率


早在2007年,綠茶提取物就憑借它在促進健康領(lǐng)域的長久良好名聲,進入了美國國家官方抗衰物質(zhì)“造星計劃”ITP,甚至比二甲雙胍、阿卡波糖等老牌抗衰藥更早。雖然在延長壽命上的效果并不明顯,但是綠茶提取物的確能降低中年雌性小鼠的死亡率[4]。


圖注:綠茶提取物能降低中年雌性小鼠的死亡率,但不能延長其壽命


No.2

抗光老化


光老化是由紫外線造成的皮膚及機體的損傷和衰老,DNA損傷、細(xì)胞衰老都是光老化可能帶來的危害。

而茶具有良好的清除氧自由基的能力,這使其成為抗光老化療法的潛在候選者。具體表現(xiàn)為:能增加膠原和彈性蛋白纖維的水平[5]、緩解紫外線帶來的細(xì)胞損傷[6]、以及通過對衰老相關(guān)途徑daf-16的調(diào)節(jié)[7]延長健康壽命。

在紫外線的威脅下,綠茶提取物不僅能減少皮膚色素沉著和皺紋的產(chǎn)生[8],還能延長線蟲等模式生物的壽命[9]。


圖注:綠茶抗光老化的途徑和方法


No.3

抗逆特性


除了抗光老化,茶還能增加人類等多種生物抵抗內(nèi)源和外源壓力的能力,防止各種疾病和損傷物的侵?jǐn)_。

例如,茶能通過抗氧化、抗高血壓、抗炎、抗增殖、抗血栓形成和降脂活性的血管保護作用[10];茶能下調(diào)卵黃原蛋白家族基因的表達(dá)來減少秀麗隱桿線蟲中的脂滴和脂肪堆積[11];茶能降低哺乳動物模型體內(nèi)鎘和鉛等有毒金屬的活性[12];茶還能降低人類患癌癥的風(fēng)險[13];此外,茶還能通過減少自由基形成來保護人成骨細(xì)胞免于吸煙帶來的損傷[14]。


No.4

神經(jīng)保護特性


一些研究顯示,飲用茶可降低阿爾茨海默病、帕金森病和認(rèn)知障礙的患病率[15]。

茶不僅能直接清除氧自由基減少氧化損傷對神經(jīng)系統(tǒng)的影響[16],還能調(diào)節(jié)亨廷頓蛋白、β淀粉樣蛋白和α-突觸核蛋白等有害蛋白質(zhì)在大腦中的積累[17],清除阿茲海默癥等神經(jīng)退行疾病的發(fā)病主要誘因。



No.5

增加自噬


生物體中,細(xì)胞能通過自噬維持細(xì)胞穩(wěn)態(tài),并促進細(xì)胞在代謝應(yīng)激下的存活[18]。而茶也能通過誘導(dǎo)和延長自噬增加細(xì)胞活力,延緩細(xì)胞死亡,繼而保護機體健康,降低糖尿病性心肌病和癌癥等疾病的風(fēng)險[19]。

通過對茶對人體健康益處的調(diào)查派派發(fā)現(xiàn),各種不同的茶也在對健康的作用上差距甚微,如果一定要分個高下,那么在一些文獻中也能找到些許端倪:

在一項對地中海群島人群的調(diào)查中發(fā)現(xiàn),和喝紅茶的人群相比,喝綠茶的人群表現(xiàn)出更高水平的身體活動、更低水平的高血壓風(fēng)險和更高的健康衰老指數(shù)[20],綠茶在抗蛋白質(zhì)變性的抗炎作用等方面可能也比紅茶更優(yōu)秀[21];而紅茶紅茶在預(yù)防輻射引起的主動脈血管緊張素活性增加和氧化應(yīng)激方面比綠茶更有效[22];

不同的茶產(chǎn)生不同的抗衰養(yǎng)生效果有所差異,歸根結(jié)底還還是因為各種茶葉中的有效生物活性物質(zhì)可能有所差異。



茶葉里的主要生物成分由多酚(~90%)、氨基酸(~7%)、茶氨酸(3-沒食子??鼘幩岷?-N-乙基谷氨酰胺等)、原花青素和咖啡因(~3%)組成。茶葉多酚是提供茶葉健康益處的“主力軍”,其主要成分包括兒茶素和黃酮醇。

兒茶素里包括兒茶素(C)、表兒茶素(EC)、沒食子兒茶素(GC)、表沒食子兒茶素(EGC)、表兒茶素沒食子酸酯(ECG)、表沒食子兒茶素沒食子酸酯(EGCG)和沒食子兒茶素沒食子酸酯(GCG)等,其中EGCG、ECG和EGC占兒茶素總量的80%[23]。

而茶葉里的黃酮素包括楊梅素、山千香素、槲皮素、綠原酸、香豆奎寧酸和可可綠素等,物質(zhì)太多,不一而足,但是每種的作用效果都不相同,各有千秋。


兒茶素

兒茶素具有抗氧化能力,其對氧自由基的清除能力比維生素C,維生素E或β-胡蘿卜素更強大[24];同時,兒茶素還有一定的癌癥預(yù)防功效,能延緩皮膚腫瘤等的發(fā)作[25];兒茶素還容易和其他物質(zhì)相結(jié)合形成復(fù)合物,如咖啡因、蛋白質(zhì)和鐵等因此也能減少這些物質(zhì)的吸收[26]。



茶黃素

茶黃素是由兒茶素氧化生成,但是也具有一定的抗氧化能力,能抑制體內(nèi)脂質(zhì)過氧化,并發(fā)揮保護淋巴細(xì)胞的作用[27-28]。


咖啡因

咖啡因能增強認(rèn)知功能、改善神經(jīng)肌肉協(xié)調(diào)、情緒提升和緩解焦慮有關(guān)[29],雖然這種物質(zhì)以“咖啡”冠名,但有意思的是,茶葉中的咖啡因含量(最高可達(dá)5%)高于咖啡豆(1.5%)[30]。



茶氨酸

茶氨酸主要為茶葉提供獨特甜味和鮮味[31],同時,茶氨酸還與放松和提高學(xué)習(xí)能力有關(guān)[32],并能抑制腫瘤[33],調(diào)節(jié)血壓[34],促進減肥[35]和改善免疫系統(tǒng)[36]。

黑茶、白茶、烏龍茶、紅茶和綠茶其實來自相同的物種—茶樹,其差異就在于收獲時間和加工方式不同,尤其是氧化水平不同。黑茶是完全經(jīng)過氧化的,烏龍茶則是部分氧化,而綠茶和白茶則并未被氧化[37]。

作為同一物種不同加工工藝的產(chǎn)物,幾種茶樹茶葉的生物活性物質(zhì)種類其實沒有區(qū)別,但是各種物質(zhì)的含量卻存在細(xì)微差異:

① 因為發(fā)酵程度的不同,發(fā)酵程度最低的綠茶、白茶的兒茶素水平最高,而發(fā)酵程度最高的黑茶、紅茶和烏龍茶兒茶素水平較低,而茶黃素恰好相反,綠茶中最少,紅茶和烏龍茶中較高;同時,在發(fā)酵的過程中,茶葉里的咖啡因水平不斷上升,因此,紅茶里的咖啡因的水平相較綠茶更高[38]。


生產(chǎn)季節(jié)、陽光照射、施肥情況和采摘部位也都會影響茶葉中各類物質(zhì)的含量,夏葉兒茶素含量高于春葉;施鉀肥的茶葉中兒茶素和茶氨酸更高[39];陽光照射越多,兒茶素越多、茶氨酸越少;相比粗葉茶,嫩葉茶中茶氨酸、可可堿、咖啡因和兒茶素含量更多[40]。


雖然說紅茶、黑茶等中的兒茶素水平不及綠茶、白茶等,但是這些發(fā)酵程度高的茶葉中,茶黃素的水平較高,可以填補因為兒茶素不足產(chǎn)生的缺陷。

因為各種物質(zhì)都有不一樣的生物活性,因此很難說究竟是華人愛喝的綠茶更好,還是西方人愛喝的紅茶更好,風(fēng)味不同,只要適量飲用,都對健康有所裨益。



講了這么多茶的好處,但是茶并非百利而無一害的飲品,在享受茶飲的同時,我們還需要注意以下幾點:


No.1

用茶服藥減藥效


茶及其提取物能和心血管疾病藥物辛伐他汀,納多洛爾和華法林等相互作用,在某些情況下可能導(dǎo)致藥物療效降低或藥物毒性風(fēng)險[41];茶還會影響抗生素阿莫西林?jǐn)z入后的血漿濃度,從而降低抗菌藥效[42]。



No.2

以茶代水或貧血


茶能影響到血紅素鐵的吸收[43],同時,茶里的兒茶酚也能和鐵相結(jié)合[44]。雖然一般飲用量下,這種抑制情況很難造成貧血等缺鐵性風(fēng)險,但是如果每天將茶當(dāng)水喝,還是會造成一定的影響。所以飲茶雖好,可不要貪杯哦~


No.3

空腹飲茶傷腸胃


當(dāng)空腹飲茶時,會產(chǎn)生一定的肝毒性和胃腸道疾病風(fēng)險副作用,對孕期、哺乳期和易感人群來說尤其明顯。因此,飲茶前最好不要空腹[45]。


No.4

奶茶≈茶?才不一樣


包括派派在內(nèi)的好多年輕人看完全文可能欣慰地抱抱自己:“不愧是我,每天都在堅持喝(奶)茶!”,那么,加了牛奶后,“喝茶”還一樣嗎?

實際恐怕不然。早在2014年,就有研究顯示,糖和蜂蜜以濃度依賴性方式顯著降低茶的抗氧化活性,加的越多,茶的健康度越低[46]。

想要通過喝奶茶健康延壽的小伙伴們可能要失望了,想要擁有茶的健康益處,首先還得學(xué)會擁抱茶的苦澀。



看完上面這么多有關(guān)茶的知識和信息,是不是從完全不同的角度對“茶道”有了更多的理解呢?不要再為茶葉的種類而爭吵啦,只要是通過安全、正規(guī)生產(chǎn)流程的茶葉,不管綠茶紅茶,能抗衰延壽,都是好茶!

—— TIMEPIE ——

這里是只做最硬核續(xù)命學(xué)研究的時光派,專注“長壽科技”科普。日以繼夜翻閱文獻撰稿只為給你帶來最新、最全前沿抗衰資訊,歡迎評論區(qū)留下你的觀點和疑惑;日更動力源自你的關(guān)注與分享,抗衰路上與你并肩同行!


參考文獻

[1] Vuong Q. V. (2014). Epidemiological evidence linking tea consumption to human health: a review. Critical reviews in food science and nutrition, 54(4), 523–536. https://doi.org/10.1080/10408398.2011.594184

[2] Hayat, K., Iqbal, H., Malik, U., Bilal, U., & Mushtaq, S. (2015). Tea and its consumption: benefits and risks. Critical reviews in food science and nutrition, 55(7), 939–954. https://doi.org/10.1080/10408398.2012.678949

[3] Parmenter, B. H., Bondonno, C. P., Murray, K., Schousboe, J. T., Croft, K., Prince, R. L., Hodgson, J. M., Bondonno, N. P., & Lewis, J. R. (2022). Higher Habitual Dietary Flavonoid Intake Associates With Less Extensive Abdominal Aortic Calcification in a Cohort of Older Women. Arteriosclerosis, thrombosis, and vascular biology, 42(12), 1482–1494. https://doi.org/10.1161/ATVBAHA.122.318408

[4] Strong, R., Miller, R. A., Astle, C. M., Baur, J. A., de Cabo, R., Fernandez, E., Guo, W., Javors, M., Kirkland, J. L., Nelson, J. F., Sinclair, D. A., Teter, B., Williams, D., Zaveri, N., Nadon, N. L., & Harrison, D. E. (2013). Evaluation of resveratrol, green tea extract, curcumin, oxaloacetic acid, and medium-chain triglyceride oil on life span of genetically heterogeneous mice. The journals of gerontology. Series A, Biological sciences and medical sciences, 68(1), 6–16. https://doi.org/10.1093/gerona/gls070

[5] Lee, K. O., Kim, S. N., & Kim, Y. C. (2014). Anti-wrinkle Effects of Water Extracts of Teas in Hairless Mouse. Toxicological research, 30(4), 283–289. https://doi.org/10.5487/TR.2014.30.4.283

[6] Meeran, S. M., Mantena, S. K., Elmets, C. A., & Katiyar, S. K. (2006). (-)-Epigallocatechin-3-gallate prevents photocarcinogenesis in mice through interleukin-12-dependent DNA repair. Cancer research, 66(10), 5512–5520. https://doi.org/10.1158/0008-5472.CAN-06-0218 (Retraction published Cancer Res. 2018 Dec 1;78(23):6709)

[7] Prasanth, M. I., Santoshram, G. S., Bhaskar, J. P., & Balamurugan, K. (2016). Ultraviolet-A triggers photoaging in model nematode Caenorhabditis elegans in a DAF-16 dependent pathway. Age (Dordrecht, Netherlands), 38(1), 27. https://doi.org/10.1007/s11357-016-9889-y

[8] Janjua, R., Munoz, C., Gorell, E., Rehmus, W., Egbert, B., Kern, D., & Chang, A. L. (2009). A two-year, double-blind, randomized placebo-controlled trial of oral green tea polyphenols on the long-term clinical and histologic appearance of photoaging skin. Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al.], 35(7), 1057–1065. https://doi.org/10.1111/j.1524-4725.2009.01183.x

[9] Garigan, D., Hsu, A. L., Fraser, A. G., Kamath, R. S., Ahringer, J., & Kenyon, C. (2002). Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics, 161(3), 1101–1112. https://doi.org/10.1093/genetics/161.3.1101

[10] Babu, P. V., & Liu, D. (2008). Green tea catechins and cardiovascular health: an update. Current medicinal chemistry, 15(18), 1840–1850. https://doi.org/10.2174/092986708785132979

[11] Xiao, R. Y., Hao, J., Ding, Y. H., Che, Y. Y., Zou, X. J., & Liang, B. (2016). Transcriptome Profile Reveals that Pu-Erh Tea Represses the Expression of Vitellogenin Family to Reduce Fat Accumulation in Caenorhabditis elegans. Molecules (Basel, Switzerland), 21(10), 1379. https://doi.org/10.3390/molecules21101379

[12] Winiarska-Mieczan A. (2018). Protective effect of tea against lead and cadmium-induced oxidative stress-a review. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine, 31(6), 909–926. https://doi.org/10.1007/s10534-018-0153-z

[13] Bettuzzi, S., Brausi, M., Rizzi, F., Castagnetti, G., Peracchia, G., & Corti, A. (2006). Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a one-year proof-of-principle study. Cancer research, 66(2), 1234–1240. https://doi.org/10.1158/0008-5472.CAN-05-1145

[14] Xue, K. X., Wang, S., Ma, G. J., Zhou, P., Wu, P. Q., Zhang, R. F., Xu, Z., Chen, W. S., & Wang, Y. Q. (1992). Micronucleus formation in peripheral-blood lymphocytes from smokers and the influence of alcohol- and tea-drinking habits. International journal of cancer, 50(5), 702–705. https://doi.org/10.1002/ijc.2910500506

[15] Caruana, M., & Vassallo, N. (2015). Tea Polyphenols in Parkinson's Disease. Advances in experimental medicine and biology, 863, 117–137. https://doi.org/10.1007/978-3-319-18365-7_6

[16] Caruana, M., & Vassallo, N. (2015). Tea Polyphenols in Parkinson's Disease. Advances in experimental medicine and biology, 863, 117–137. https://doi.org/10.1007/978-3-319-18365-7_6

[17] Bieschke, J., Russ, J., Friedrich, R. P., Ehrnhoefer, D. E., Wobst, H., Neugebauer, K., & Wanker, E. E. (2010). EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. Proceedings of the National Academy of Sciences of the United States of America, 107(17), 7710–7715. https://doi.org/10.1073/pnas.0910723107

[18] Wang, M., Zhang, W. B., Zhu, J. H., Fu, G. S., & Zhou, B. Q. (2009). Breviscapine ameliorates hypertrophy of cardiomyocytes induced by high glucose in diabetic rats via the PKC signaling pathway. Acta pharmacologica Sinica, 30(8), 1081–1091. https://doi.org/10.1038/aps.2009.95

[19] Holczer, M., Besze, B., Zámbó, V., Csala, M., Bánhegyi, G., & Kapuy, O. (2018). Epigallocatechin-3-Gallate (EGCG) Promotes Autophagy-Dependent Survival via Influencing the Balance of mTOR-AMPK Pathways upon Endoplasmic Reticulum Stress. Oxidative medicine and cellular longevity, 2018, 6721530. https://doi.org/10.1155/2018/6721530

[20] Naumovski, N., Foscolou, A., D'Cunha, N. M., Tyrovolas, S., Chrysohoou, C., Sidossis, L. S., Rallidis, L., Matalas, A. L., Polychronopoulos, E., Pitsavos, C., & Panagiotakos, D. (2019). The Association between Green and Black Tea Consumption on Successful Aging: A Combined Analysis of the ATTICA and MEDiterranean ISlands (MEDIS) Epidemiological Studies. Molecules (Basel, Switzerland), 24(10), 1862. https://doi.org/10.3390/molecules24101862

[21] Chatterjee, P., Chandra, S., Dey, P., & Bhattacharya, S. (2012). Evaluation of anti-inflammatory effects of green tea and black tea: A comparative in vitro study. Journal of advanced pharmaceutical technology & research, 3(2), 136–138. https://doi.org/10.4103/2231-4040.97298

[22] Korystova, A. F., Kublik, L. N., Samokhvalova, T. V., Shaposhnikova, V. V., & Korystov, Y. N. (2021). Black tea is more effective than green tea in prevention of radiation-induced oxidative stress in the aorta of rats. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 142, 112064. https://doi.org/10.1016/j.biopha.2021.112064

[23] Lee, L. S., Kim, S. H., Kim, Y. B., & Kim, Y. C. (2014). Quantitative analysis of major constituents in green tea with different plucking periods and their antioxidant activity. Molecules (Basel, Switzerland), 19(7), 9173–9186. https://doi.org/10.3390/molecules19079173

[24] Vuong, Q. V., Stathopoulos, C. E., Nguyen, M. H., Golding, J. B., & Roach, P. D. (2011). Isolation of green tea catechins and their utilization in the food industry. Food Reviews International, 27(3), 227-247.

[25] Roy, P., Nigam, N., George, J., Srivastava, S., & Shukla, Y. (2009). Induction of apoptosis by tea polyphenols mediated through mitochondrial cell death pathway in mouse skin tumors. Cancer biology & therapy, 8(13), 1281–1287. https://doi.org/10.4161/cbt.8.13.8728

[26] Tsutsumi, H., Sato, T., & Ishizu, T. (2011). Stereochemical structure and intermolecular interaction of complexes of (-)-Gallocatechin-3-O-gallate and caffeine. Chemical & pharmaceutical bulletin, 59(1), 100–105. https://doi.org/10.1248/cpb.59.100

[27] Yoshino, K., Hara, Y., Sano, M., & Tomita, I. (1994). Antioxidative effects of black tea theaflavins and thearubigin on lipid peroxidation of rat liver homogenates induced by tert-butyl hydroperoxide. Biological & pharmaceutical bulletin, 17(1), 146–149. https://doi.org/10.1248/bpb.17.146

[28] Halder, B., Pramanick, S., Mukhopadhyay, S., & Giri, A. K. (2006). Anticlastogenic effects of black tea polyphenols theaflavins and thearubigins in human lymphocytes in vitro. Toxicology in vitro : an international journal published in association with BIBRA, 20(5), 608–613. https://doi.org/10.1016/j.tiv.2005.10.010

[29] Glade M. J. (2010). Caffeine-Not just a stimulant. Nutrition (Burbank, Los Angeles County, Calif.), 26(10), 932–938. https://doi.org/10.1016/j.nut.2010.08.004

[30] Chu, D. C., Juneja, L. R., Kim, M., & Yamamotro, T. (1997). Chemistry and applications of green tea. CRC. press. New York, USA, 13-16.

[31] Balentine, D. A., Harbowy, M. E., & Graham, H. N. (1998). Caffeine (pp. 35–68).

[32] Cooper, R., Morré, D. J., & Morré, D. M. (2005). Medicinal benefits of green tea: Part I. Review of noncancer health benefits. Journal of alternative and complementary medicine (New York, N.Y.), 11(3), 521–528. https://doi.org/10.1089/acm.2005.11.521

[33] Liu, Q., Duan, H., Luan, J., Yagasaki, K., & Zhang, G. (2009). Effects of theanine on growth of human lung cancer and leukemia cells as well as migration and invasion of human lung cancer cells. Cytotechnology, 59(3), 211–217. https://doi.org/10.1007/s10616-009-9223-y

[34] Rogers, P. J., Smith, J. E., Heatherley, S. V., & Pleydell-Pearce, C. W. (2008). Time for tea: mood, blood pressure and cognitive performance effects of caffeine and theanine administered alone and together. Psychopharmacology, 195(4), 569–577. https://doi.org/10.1007/s00213-007-0938-1

[35] Di, X., Yan, J., Zhao, Y., Zhang, J., Shi, Z., Chang, Y., & Zhao, B. (2010). L-theanine protects the APP (Swedish mutation) transgenic SH-SY5Y cell against glutamate-induced excitotoxicity via inhibition of the NMDA receptor pathway. Neuroscience, 168(3), 778-786.

[36] Takagi, Y., Kurihara, S., Higashi, N., Morikawa, S., Kase, T., Maeda, A., Arisaka, H., Shibahara, S., & Akiyama, Y. (2010). Combined administration of (L)-cystine and (L)-theanine enhances immune functions and protects against influenza virus infection in aged mice. The Journal of veterinary medical science, 72(2), 157–165. https://doi.org/10.1292/jvms.09-0067

[37] Pan, S. Y., Nie, Q., Tai, H. C., Song, X. L., Tong, Y. F., Zhang, L. J., Wu, X. W., Lin, Z. H., Zhang, Y. Y., Ye, D. Y., Zhang, Y., Wang, X. Y., Zhu, P. L., Chu, Z. S., Yu, Z. L., & Liang, C. (2022). Tea and tea drinking: China's outstanding contributions to the mankind. Chinese medicine, 17(1), 27. https://doi.org/10.1186/s13020-022-00571-1

[38] Graham H. N. (1992). Green tea composition, consumption, and polyphenol chemistry. Preventive medicine, 21(3), 334–350. https://doi.org/10.1016/0091-7435(92)90041-f

[39] Venkatesan, S., Murugesan, S., Ganapathy, M. N., & Verma, D. P. (2004). Long‐term impact of nitrogen and potassium fertilizers on yield, soil nutrients and biochemical parameters of tea. Journal of the Science of Food and Agriculture, 84(14), 1939-1944.

[40] Hara, Y. (2001). Green tea: health benefits and applications. CRC press.

[41] Werba, J. P., Misaka, S., Giroli, M. G., Shimomura, K., Amato, M., Simonelli, N., Vigo, L., & Tremoli, E. (2018). Update of green tea interactions with cardiovascular drugs and putative mechanisms. Journal of food and drug analysis, 26(2S), S72–S77. https://doi.org/10.1016/j.jfda.2018.01.008

[42] Kiss, T., Timár, Z., Szabó, A., Lukács, A., Velky, V., Oszlánczi, G., Horváth, E., Takács, I., Zupkó, I., & Csupor, D. (2019). Effect of green tea on the gastrointestinal absorption of amoxicillin in rats. BMC pharmacology & toxicology, 20(1), 54. https://doi.org/10.1186/s40360-019-0332-8

[43] Hallberg, L., & Rossander, L. (1982). Effect of different drinks on the absorption of non-heme iron from composite meals. Human nutrition. Applied nutrition, 36(2), 116-123.

[44] Zijp, I. M., Korver, O., & Tijburg, L. B. (2000). Effect of tea and other dietary factors on iron absorption. Critical reviews in food science and nutrition, 40(5), 371-398.

[45] Bedrood, Z., Rameshrad, M., & Hosseinzadeh, H. (2018). Toxicological effects of Camellia sinensis (green tea): A review. Phytotherapy research : PTR, 32(7), 1163–1180. https://doi.org/10.1002/ptr.6063

[46] Korir, M. W., Wachira, F. N., Wanyoko, J. K., Ngure, R. M., & Khalid, R. (2014). The fortification of tea with sweeteners and milk and its effect on in vitro antioxidant potential of tea product and glutathione levels in an animal model. Food chemistry, 145, 145–153. https://doi.org/10.1016/j.foodchem.2013.08.016

喝茶養(yǎng)生是真的!東方綠茶 VS 西方紅茶,誰更抗衰?的評論 (共 條)

分享到微博請遵守國家法律
连州市| 南溪县| 兖州市| 涿鹿县| 新建县| 吴旗县| 乌兰浩特市| 光山县| 新兴县| 葵青区| 池州市| 义乌市| 西峡县| 灵宝市| 习水县| 田林县| 嘉禾县| 资源县| 嘉兴市| 浦东新区| 普陀区| 清河县| 临洮县| 新巴尔虎右旗| 永春县| 永安市| 和林格尔县| 中宁县| 渝北区| 应城市| 甘孜县| 赣州市| 吕梁市| 图木舒克市| 盐池县| 泰和县| 永新县| 新密市| 二连浩特市| 石城县| 云浮市|