最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

Electric Potential||Electromagnetism

2021-01-21 10:39 作者:湮滅的末影狐  | 我要投稿

//This?chapter?covers a number of mathematical topics that will be critical in our treatment of electromagnetism.

//Let's start it.

//And this time I won't follow the order of our textbook, for this will be too slow.

//Because I write this assuming that all readers have already known some basic concepts?of field theory, such as gradiant, divergence, curl of a scalar of vector field.

1. Definition

We know?according to Columb's law, we can prove that in the electric field of a single point charge, the work done to move another charge is only determined by its initial and ultimate position, which means for different paths, we have

W%3D%5Cint_A%20%5Cvec%20E%20%5Ccdot%20%5Cmathrm%20d%20%5Cvec%20l%3D%5Cint_B%20%5Cvec%20E%20%5Ccdot%20%5Cmathrm%20d%20%5Cvec%20l

Different path

and so we can prove the line integral of?%5Cvec%20E around any closed path in an electrostatic field is

%5Coint%20%5Cvec%20E%20%5Ccdot%20%5Cmathrm%20d%20%5Cvec%20l%20%3D0

But this is only true for electrostatic field. We will learn more about circuit integral of electric field?in?the following chapters. So?we know

%5Cnabla%20%5Ctimes%20%5Cvec%20E%3D0

and that means?%5Cvec%20E is the gradient of another scalar field:

%5Cvec%20E%20%3D%20-%5Cnabla%20%5Cphi%3D(-%5Cfrac%7B%5Cpartial%5Cphi%7D%7B%5Cpartial%20x%7D%2C-%5Cfrac%7B%5Cpartial%5Cphi%7D%7B%5Cpartial%20y%7D%2C-%5Cfrac%7B%5Cpartial%5Cphi%7D%7B%5Cpartial%20z%7D)

where?%5Cphi is called electric potential.

And when we move a charge?q from A to B, we can?find the?change of its electric potential energy is

%5CDelta%20E_p%20%3D%20q(%5Cphi_B-%5Cphi_A)

For a single point charge?q,we often put zero potential at infinite distance, and

%5Cphi%20%3D%20%5Cfrac%20q%7B4%5Cpi%20%5Cepsilon_0%20r%7D

Demonstration

2. Superposition principle

The potential function is simply the sum of the potential functions that we would have for each of the sources present alone- providing we make a consistent assignment of the zero of the potential in each case. And that means for a charge distribution, we have

%5Cphi%20%3D%20%5Ciiint_%7B%5Crm%20all%7D%20%5Cfrac%20%5Crho%20%7B4%5Cpi%5Cepsilon_0%7D%20%5Cmathrm%20d%20V

3. Poisson's equation

We've already known:

%5Cvec%20E%20%3D%20-%5Cnabla%20%5Cphi

%5Cnabla%20%5Ccdot%20%5Cvec%20E%3D-%5Cfrac%20%5Crho%20%7B%5Cepsilon_0%7D

So...

%5Cnabla%5E2%20%5Cphi%20%3D%20-%5Cfrac%5Crho%7B%5Cepsilon_0%7D

This is Poisson's equation,?relates the charge density to the potential.?We will learn?advanced versions of this equation many?chapters later, considering electromangetic induction and theory of relativity.?

If in free space where charge density is 0, we have

%5Cnabla%5E2%20%5Cphi%3D0

And this is Laplace's equation. And with this equation we can prove that: In free space there can't exist any electric potential extremum. So a charge can't find a stable equilibrium in electrostatic field.

4?Dipole

A dipole is two charges with equal and opposite charge?%5Cpm%20q,?placed at?(%5Cpm%20%5Cfrac%20l2%2C0) as shown in figure. In this system, using polar coordinates,?electric potential:

%5Cphi(r%2C%20%5Ctheta)%20%3D%20%5Cfrac%7Bq%7D%7B4%5Cpi%5Cepsilon_0%7D(%5Cfrac1%7B%5Csqrt%20%7Br%5E2%2B%5Cfrac%7Bl%5E2%7D4-rl%5Ccos%20%5Ctheta%7D%7D-%5Cfrac1%7B%5Csqrt%20%7Br%5E2%2B%5Cfrac%7Bl%5E2%7D4%2Brl%5Ccos%20%5Ctheta%7D%7D)

If we observe it from very far, which means?r%3E%3El, we can use approximation

%5Cphi(r%2C%5Ctheta)%20%5Capprox%20%5Cfrac%20%7Bql%5Ccos%20%5Ctheta%7D%7B4%5Cpi%5Cepsilon_0%20r%5E2%7D

Actually, if we want to create a charged object that can exactly?generate an electric potential field as above, it can be a spherical shell with surface charge density distribution

%5Csigma(%5Ctheta)%3D%20%5Csigma_0%20%5Ccos%20%5Ctheta

And this is equal to two spheres with opposite uniform charge density placed very close. This will be useful.

demonstration

If we want to calculate electric field generated by a dipole, we can simply put

E_r%20%3D%20-%20%5Cfrac%7B%5Cpartial%20%5Cphi%7D%7B%5Cpartial%20r%7D%3D%20%5Cfrac%20%7Bp%20%5Ccos%20%5Ctheta%7D%7B2%5Cpi%20%5Cepsilon_0%20r%5E3%7D

E_%5Ctheta%3D%20-%20%5Cfrac1r%5Cfrac%7B%5Cpartial%20%5Cphi%7D%7B%5Cpartial%20%5Ctheta%7D%3D%20%5Cfrac%20%7Bp%20%5Csin%20%5Ctheta%7D%7B4%5Cpi%20%5Cepsilon_0%20r%5E3%7D

And if we define dipole moment:

%5Cvec%20p%20%3D%20ql

Field around a dipole can be expressed as

%5Cphi%20%3D%20%5Cfrac%7B%5Cvec%20p%20%5Ccdot%20%5Cvec%20r%7D%7B4%5Cpi%5Cepsilon_0r%5E3%7D

E_r%3D%20%5Cfrac%7B%20p%5Ccos%20%5Ctheta%7D%7B2%5Cpi%5Cepsilon_0r%5E3%7D

E_%5Ctheta%3D%20%5Cfrac%7Bp%20%5Csin%20%5Ctheta%7D%7B4%5Cpi%5Cepsilon_0r%5E3%7D

And this dipole moment is not only defined to simplify the expressions above. It can be used to find force and torque acted on a dipole:

%5Cvec%20F%20%3D%20(%5Cvec%20p%20%5Ccdot%20%5Cnabla)%5Cvec%20E

%5Ctau%3D%5Cvec%20p%20%5Ctimes%20%5Cvec%20E

And we will see more about?dipoles in Magnetostatics.

References

[1] Edward M. Purcell, David J. Morin. Electricity and Magnetism (Third Edition)[M]. Cambridge Univercity Press.

Electric Potential||Electromagnetism的評論 (共 條)

分享到微博請遵守國家法律
当涂县| 刚察县| 郴州市| 黑山县| 玛纳斯县| 济阳县| 夹江县| 屯留县| 霍山县| 平原县| 宁安市| 公主岭市| 榆树市| 抚顺县| 平顺县| 潼南县| 深圳市| 嘉祥县| 临安市| SHOW| 平安县| 萨迦县| 株洲县| 界首市| 松阳县| 道真| 昭平县| 全椒县| 延边| 砚山县| 鄱阳县| 玉屏| 东源县| 阿鲁科尔沁旗| 徐水县| 普格县| 夏津县| 泾源县| 耒阳市| 中宁县| 温泉县|