最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

懸鏈線與雙曲函數(shù)、反雙曲函數(shù)(2)

2022-02-10 10:30 作者:匆匆-cc  | 我要投稿

????????我們來認識一下前文中部分奇奇怪怪的新符號。

? ? ? ? 認識雙曲函數(shù),我們從一個熟悉的角度。

f(x)%3D%5Cfrac%7Be%5Ex-e%5E%7B-x%7D%7D%7B2%7D

g(x)%3D%5Cfrac%7Be%5Ex%2Be%5E%7B-x%7D%7D%7B2%7D

h(x)%3D%5Cfrac%7Be%5Ex-e%5E%7B-x%7D%7D%7Be%5Ex%2Be%5E%7B-x%7D%7D

? ? ? ? 容易證明,f(x)為奇函數(shù),g(x)為偶函數(shù)函數(shù),h(x)為奇函數(shù)。

? ? ? ? 其實,這三個函數(shù)分別為雙曲正弦函數(shù)、雙曲余弦函數(shù)雙曲正切函數(shù)。

????????分別記作

f(x)%3D%5Csinh%20x%3D%5Cfrac%7Be%5Ex-e%5E%7B-x%7D%7D%7B2%7D

g(x)%3D%5Ccosh%20x%3D%5Cfrac%7Be%5Ex%2Be%5E%7B-x%7D%7D%7B2%7D

h(x)%3D%5Ctanh%20x%3D%5Cfrac%7Be%5Ex-e%5E%7B-x%7D%7D%7Be%5Ex%2Be%5E%7B-x%7D%7D

????????所以,這些名稱是怎么來的?

????????首先有一個恒等式:

%5Cbegin%7Balign%7D%0A%5Ccosh%5E2%20x-%5Csinh%5E2%20x%26%3D%5Cleft(%5Cfrac%7Be%5Ex%2Be%5E%7B-x%7D%7D%7B2%7D%5Cright)%5E2-%5Cleft(%5Cfrac%7Be%5Ex-e%5E%7B-x%7D%7D%7B2%7D%5Cright)%5E2%0A%5C%5C%26%3D%5Cleft(%5Cfrac%7Be%5Ex%2Be%5E%7B-x%7D%7D%7B2%7D%2B%5Cfrac%7Be%5Ex-e%5E%7B-x%7D%7D%7B2%7D%5Cright)%5Ccdot%5Cleft(%5Cfrac%7Be%5Ex%2Be%5E%7B-x%7D%7D%7B2%7D-%5Cfrac%7Be%5Ex-e%5E%7B-x%7D%7D%7B2%7D%5Cright)%0A%5C%5C%26%3De%5Ex%5Ccdot%20e%5E%7B-x%7D%0A%5C%5C%26%3D1%0A%5Cend%7Balign%7D

%5Ccolor%7Bgray%7D%7B%5Csin%5E2x%2B%5Ccos%5E2x%3D1%7D

????????似乎有某些相似之處。

????????同樣,我們發(fā)現(xiàn)

%5Ctanh%20x%3D%5Cfrac%7B%5Csinh%20x%7D%7B%5Ccosh%20x%7D

%5Ccolor%7Bgray%7D%7B%5Ctan%20x%3D%5Cfrac%7B%5Csin%20x%7D%7B%5Ccos%20x%7D%7D

????????事實上,我們可以定義

%5Csinh%20x%3D-i%5Csin%20ix

%5Ccosh%20x%3D%5Ccos%20ix

????## 注意:該定義非常重要,因為計算起來會比較簡便。

????????這個定義從何而來?筆者猜想來自歐拉公式

e%5E%7Bi%5Ctheta%7D%3D%5Ccos%20%5Ctheta%2Bi%5Csin%20%5Ctheta

????????令

%5Ctheta%3D-ix

????????我們得到

e%5Ex%3D%5Ccos(-ix)%2Bi%5Csin(-ix)%3D%5Ccos%20ix-i%5Csin%20ix%3D%5Ccosh%20x%2B%5Csinh%20x

????????原來,雙曲正弦和雙曲余弦不過是e指數(shù)函數(shù)的兩部分。

????????當然,根據(jù)雙曲正弦和雙曲余弦的新定義,我們也就有

%5Ctanh%20x%3D%5Cfrac%7B%5Csinh%20x%7D%7B%5Ccosh%20x%7D%3D%5Cfrac%7B-i%5Csin%20ix%7D%7B%5Ccos%20ix%7D%3D-i%5Ctan%20ix

????????代入恒等式,會發(fā)現(xiàn)

%5Cbegin%7Balign%7D%0A%5Ccosh%5E2%20x-%5Csinh%5E2%20x%26%3D(%5Ccos%20ix)%5E2-(-i%5Csin%20ix)%5E2%0A%5C%5C%26%3D%5Ccos%5E2ix%2B%5Csin%5E2ix%0A%5C%5C%26%3D1%0A%5Cend%7Balign%7D

????????至于“雙曲”之名,則是來自于雙曲線

????????考察參數(shù)方程

%5Cbegin%7Bcases%7D%0Ax%3Da%5Ccosh%20t%5C%5C%0Ay%3Db%5Csinh%20t%0A%5Cend%7Bcases%7D

????????我們就會發(fā)現(xiàn)

%5Cfrac%7Bx%5E2%7D%7Ba%5E2%7D-%5Cfrac%7By%5E2%7D%7Bb%5E2%7D%3D%5Ccosh%5E2x-%5Csinh%5E2x%3D1

????????是一組雙曲線。

????????我們研究雙曲函數(shù)的導數(shù)。

(%5Csinh%20x)'%3D(-i%5Csin%20ix)'%3D-i%5Ccdot%20i%5Ccos%20ix%3D%5Ccos%20ix%3D%5Ccosh%20x

(%5Ccosh%20x)'%3D(%5Ccos%20ix)'%3Di%5Ccdot%20(-%5Csin%20ix)%3D-i%5Csin%20ix%3D%5Csinh%20x

????## 注意:和三角函數(shù)不同,這里沒有負號。

????????限于篇幅與繁復的計算,下面不加證明地給出剩余幾個雙曲函數(shù)的定義及諸多恒等式。

%5Ccoth%20x%3D%5Cfrac%7Be%5Ex%2Be%5E%7B-x%7D%7D%7Be%5Ex-e%5E%7B-x%7D%7D%3Di%5Ccot%20ix

%5Coperatorname%7Bsech%7D%20x%3D%5Cfrac%7B2%7D%7Be%5Ex%2Be%5E%7B-x%7D%7D%3D%5Csec%20ix

%5Coperatorname%7Bcsch%7Dx%3D%5Cfrac%7B2%7D%7Be%5Ex-e%5E%7B-x%7D%7D%3Di%5Ccsc%20ix

1-%5Ctanh%5E2x%3D%5Cfrac%7B1%7D%7B%5Ccosh%5E2%20x%7D

%5Ccolor%7Bgray%7D%7B1%2B%5Ctan%5E2x%3D%5Cfrac%7B1%7D%7B%5Ccos%5E2x%7D%7D

(%5Ctanh%20x)'%3D%5Cfrac%7B1%7D%7B%5Ccosh%5E2x%7D

%5Ccolor%7Bgray%7D%7B(%5Ctan%20x)'%3D%5Cfrac%7B1%7D%7B%5Ccos%5E2x%7D%7D

(%5Ccoth%20x)'%3D-%5Cfrac%7B1%7D%7B%5Csinh%5E2x%7D

%5Ccolor%7Bgray%7D%7B(%5Ccot%20x)'%3D-%5Cfrac%7B1%7D%7B%5Csin%5E2x%7D%7D

(%5Coperatorname%7Bsech%7Dx)'%3D-%5Cfrac%7B%5Csinh%20x%7D%7B%5Ccosh%5E2%20x%7D

%5Ccolor%7Bgray%7D%7B(%5Coperatorname%7Bsec%7Dx)'%3D%5Cfrac%7B%5Csin%20x%7D%7B%5Ccos%5E2%20x%7D%7D

(%5Coperatorname%7Bcsch%7Dx)'%3D-%5Cfrac%7B%5Ccosh%20x%7D%7B%5Csinh%5E2x%7D

%5Ccolor%7Bgray%7D%7B(%5Coperatorname%7Bcsc%7Dx)'%3D-%5Cfrac%7B%5Ccos%20x%7D%7B%5Csin%5E2x%7D%7D

????## 不熟悉三角函數(shù)的導數(shù)的可以參看以下鏈接。

%5Csinh%20(x%5Cpm%20y)%3D%5Csinh%20x%5Ccosh%20y%5Cpm%20%5Ccosh%20x%5Csinh%20y

%5Ccolor%7Bgray%7D%7B%5Csin%20(x%5Cpm%20y)%3D%5Csin%20x%5Ccos%20y%5Cpm%20%5Ccos%20x%5Csin%20y%7D

%5Ccosh%20(x%5Cpm%20y)%3D%5Ccosh%20x%5Ccosh%20y%5Cpm%20%5Csinh%20x%5Csinh%20y

%5Ccolor%7Bgray%7D%7B%5Ccos%20(x%5Cpm%20y)%3D%5Ccos%20x%5Ccos%20y%5Cmp%20%5Csin%20x%5Csin%20y%7D

%5Ctanh(x%5Cpm%20y)%3D%5Cfrac%7B%5Ctanh%20x%5Cpm%5Ctanh%20y%7D%7B1%5Cpm%5Ctanh%20x%5Ctanh%20y%7D

%5Ccolor%7Bgray%7D%7B%5Ctan(x%5Cpm%20y)%3D%5Cfrac%7B%5Ctan%20x%5Cpm%5Ctan%20y%7D%7B1%5Cmp%5Ctan%20x%5Ctan%20y%7D%7D

%5Csinh%202x%3D2%5Csinh%20x%5Ccosh%20x%3D%5Cfrac%7B2%5Ctanh%20x%7D%7B1-%5Ctanh%5E2x%7D

%5Ccolor%7Bgray%7D%7B%5Csin%202x%3D2%5Csin%20x%5Ccos%20x%3D%5Cfrac%7B2%5Ctan%20x%7D%7B1%2B%5Ctan%5E2x%7D%7D

%5Ccosh%202x%3D%5Ccosh%5E2x%2B%5Csinh%5E2x%3D2%5Ccosh%5E2x-1%3D1%2B2%5Csinh%5E2x%3D%5Cfrac%7B1%2B%5Ctanh%5E2x%7D%7B1-%5Ctanh%5E2x%7D

%5Ccolor%7Bgray%7D%7B%5Ccos%202x%3D%5Ccos%5E2x-%5Csin%5E2x%3D2%5Ccos%5E2x-1%3D1%2B2%5Csin%5E2x%3D%5Cfrac%7B1-%5Ctan%5E2x%7D%7B1%2B%5Ctan%5E2x%7D%7D

%5Ctanh%202x%3D%5Cfrac%7B2%5Ctanh%20x%7D%7B1%2B%5Ctanh%5E2x%7D

%5Ccolor%7Bgray%7D%7B%5Ctan%202x%3D%5Cfrac%7B2%5Ctan%20x%7D%7B1-%5Ctan%5E2x%7D%7D

%5Csinh%20x%2B%5Csinh%20y%3D2%5Csinh%5Cfrac%7Bx%2By%7D%7B2%7D%5Ccosh%5Cfrac%7Bx-y%7D%7B2%7D

%5Ccolor%7Bgray%7D%7B%5Csin%20x%2B%5Csin%20y%3D2%5Csin%5Cfrac%7Bx%2By%7D%7B2%7D%5Ccos%5Cfrac%7Bx-y%7D%7B2%7D%7D

%5Ccosh%20x%2B%5Ccosh%20y%3D2%5Ccosh%5Cfrac%7Bx%2By%7D%7B2%7D%5Ccosh%5Cfrac%7Bx-y%7D%7B2%7D

%5Ccolor%7Bgray%7D%7B%5Ccos%20x%2B%5Ccos%20y%3D2%5Ccos%5Cfrac%7Bx%2By%7D%7B2%7D%5Ccos%5Cfrac%7Bx-y%7D%7B2%7D%7D

%5Csinh%20x-%5Csinh%20y%3D2%5Ccosh%5Cfrac%7Bx%2By%7D%7B2%7D%5Csinh%5Cfrac%7Bx-y%7D%7B2%7D

%5Ccolor%7Bgray%7D%7B%5Csin%20x-%5Csin%20y%3D2%5Ccos%5Cfrac%7Bx%2By%7D%7B2%7D%5Csin%5Cfrac%7Bx-y%7D%7B2%7D%7D

%5Ccosh%20x-%5Ccosh%20y%3D2%5Csinh%5Cfrac%7Bx%2By%7D%7B2%7D%5Csinh%5Cfrac%7Bx-y%7D%7B2%7D

%5Ccolor%7Bgray%7D%7B%5Ccos%20x-%5Ccos%20y%3D-2%5Csin%5Cfrac%7Bx%2By%7D%7B2%7D%5Csin%5Cfrac%7Bx-y%7D%7B2%7D%7D

%5Csinh%20x%5Ccosh%20y%3D%5Cfrac%7B1%7D%7B2%7D%5B%5Csinh(x%2By)%2B%5Csinh(x-y)%5D

%5Ccolor%7Bgray%7D%7B%5Csin%20x%5Ccos%20y%3D%5Cfrac%7B1%7D%7B2%7D%5B%5Csin(x%2By)%2B%5Csin(x-y)%5D%7D

%5Ccosh%20x%5Csinh%20y%3D%5Cfrac%7B1%7D%7B2%7D%5B%5Csinh(x%2By)-%5Csinh(x-y)%5D

%5Ccolor%7Bgray%7D%7B%5Ccos%20x%5Csin%20y%3D%5Cfrac%7B1%7D%7B2%7D%5B%5Csin(x%2By)-%5Csin(x-y)%5D%7D

%5Ccosh%20x%5Ccosh%20y%3D%5Cfrac%7B1%7D%7B2%7D%5B%5Ccosh(x%2By)%2B%5Ccosh(x-y)%5D

%5Ccolor%7Bgray%7D%7B%5Ccos%20x%5Ccos%20y%3D%5Cfrac%7B1%7D%7B2%7D%5B%5Ccos(x%2By)%2B%5Ccos(x-y)%5D%7D

%5Csinh%20x%5Csinh%20y%3D%5Cfrac%7B1%7D%7B2%7D%5B%5Ccosh(x%2By)-%5Ccosh(x-y)%5D

%5Ccolor%7Bgray%7D%7B%5Csin%20x%5Csin%20y%3D-%5Cfrac%7B1%7D%7B2%7D%5B%5Ccos(x%2By)-%5Ccos(x-y)%5D%7D

? ? ## 注意:以上有若干處正負號和三角函數(shù)不同。

%5Csinh%20x%3Dx%2B%5Cfrac%7Bx%5E3%7D%7B3!%7D%2B%5Cfrac%7Bx%5E5%7D%7B5!%7D%2B%E2%80%A6

%5Ccolor%7Bgray%7D%7B%5Csin%20x%3Dx-%5Cfrac%7Bx%5E3%7D%7B3!%7D%2B%5Cfrac%7Bx%5E5%7D%7B5!%7D%2B%E2%80%A6%7D

%5Ccosh%20x%3D1%2B%5Cfrac%7Bx%5E2%7D%7B2!%7D%2B%5Cfrac%7Bx%5E4%7D%7B4!%7D%2B%E2%80%A6

%5Ccolor%7Bgray%7D%7B%5Ccos%20x%3D1-%5Cfrac%7Bx%5E2%7D%7B2!%7D%2B%5Cfrac%7Bx%5E4%7D%7B4!%7D%2B%E2%80%A6%7D

????## 這兩個級數(shù)加起來就是%5Ccolor%7Bgray%7D%7Be%7D指數(shù)函數(shù)的泰勒展開。

(%5Ccosh%20x%2B%5Csinh%20x)%5En%3D%5Ccosh%20nx%2B%5Csinh%20nx

%5Ccolor%7Bgray%7D%7B(%5Ccos%20x%2Bi%5Csin%20x)%5En%3D%5Ccos%20nx%2Bi%5Csin%20nx%7D

? ? ## 棣莫弗公式

????????雙曲函數(shù)廣泛應用于懸鏈線、四維空間的轉動等地方。






懸鏈線與雙曲函數(shù)、反雙曲函數(shù)(2)的評論 (共 條)

分享到微博請遵守國家法律
浦江县| 保亭| 安新县| 平远县| 黄山市| 望江县| 平山县| 武宣县| 盘锦市| 静乐县| 台东市| 个旧市| 兴山县| 东阿县| 从化市| 宁明县| 环江| 都昌县| 余庆县| 湖南省| 靖边县| 镇沅| 丽水市| 石家庄市| 横峰县| 福清市| 姜堰市| 耿马| 新和县| 南木林县| 拜城县| 靖州| 方正县| 江华| 习水县| 岐山县| 乌恰县| 昌宁县| 青岛市| 共和县| 尖扎县|