【DELM分類】基于布谷鳥算法改進(jìn)深度學(xué)習(xí)極限學(xué)習(xí)機(jī)實(shí)現(xiàn)數(shù)據(jù)分類附matlab代碼
1 簡介
人工神經(jīng)網(wǎng)絡(luò)的最大缺點(diǎn)是訓(xùn)練時(shí)間太長從而限制其實(shí)時(shí)應(yīng)用范圍,近年來,極限學(xué)習(xí)機(jī)(Extreme Learning Machine, ELM)的提出使得前饋神經(jīng)網(wǎng)絡(luò)的訓(xùn)練時(shí)間大大縮短,然而當(dāng)原始數(shù)據(jù)混雜入大量噪聲變量時(shí),或者當(dāng)輸入數(shù)據(jù)維度非常高時(shí),極限學(xué)習(xí)機(jī)算法的綜合性能會受到很大的影響.深度學(xué)習(xí)算法的核心是特征映射,它能夠摒除原始數(shù)據(jù)中的噪聲,并且當(dāng)向低維度空間進(jìn)行映射時(shí),能夠很好的起到對數(shù)據(jù)降維的作用,因此我們思考利用深度學(xué)習(xí)的優(yōu)勢特性來彌補(bǔ)極限學(xué)習(xí)機(jī)的弱勢特性從而改善極限學(xué)習(xí)機(jī)的性能.為了進(jìn)一步提升DELM預(yù)測精度,本文采用麻雀搜索算法進(jìn)一步優(yōu)化DELM超參數(shù),仿真結(jié)果表明,改進(jìn)算法的預(yù)測精度更高。





2 部分代碼
function [ result ] = func_levy( nestPop,Xmax,Xmin)
%FUNC_LEVY : Update position of nest by using Levy flights
%@author : zhaoyuqiang
[N,D] = size(nestPop) ;
% Levy flights by Mantegna's algorithm
beta = 1.5 ;
alpha = 1 ;
sigma_u = (gamma(1+beta)*sin(pi*beta/2)/(beta*gamma((1+beta)/2)*2^((beta-1)/2)))^(1/beta) ;
sigma_v = 1 ;
u = normrnd(0,sigma_u,N,D) ;
v = normrnd(0,sigma_v,N,D) ;
step = u./(abs(v).^(1/beta)) ;
% alpha = 0.1.*(nestPop(randperm(N),:)-nestPop(randperm(N),:)); % Bad effect
nestPop = nestPop+alpha.*step ;
% Deal with bounds
nestPop(find(nestPop>Xmax)) = Xmax ; %#ok<*FNDSB>
nestPop(find(nestPop<Xmin)) = Xmin ;
result = nestPop ;
end
3 仿真結(jié)果

4 參考文獻(xiàn)
[1]馬萌萌. 基于深度學(xué)習(xí)的極限學(xué)習(xí)機(jī)算法研究[D]. 中國海洋大學(xué), 2015.
博主簡介:擅長智能優(yōu)化算法、神經(jīng)網(wǎng)絡(luò)預(yù)測、信號處理、元胞自動機(jī)、圖像處理、路徑規(guī)劃、無人機(jī)等多種領(lǐng)域的Matlab仿真,相關(guān)matlab代碼問題可私信交流。
部分理論引用網(wǎng)絡(luò)文獻(xiàn),若有侵權(quán)聯(lián)系博主刪除。
