最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

一些基本不等式的證明

2023-06-03 09:18 作者:~Sakuno醬  | 我要投稿

首先證明不等式

(%5Cfrac%7Bx%2By%7D%7B2%7D)%5E2%20%5Cge%20xy?? ? ?

(%5Cfrac%7Bx%2By%7D%7B2%7D)%5E2%20-%20xy%20%3D%20%5Cfrac%7Bx%5E2%2By%5E2%7D%7B2%7D%20%5Cge%200%20? 當?x%3Dy%3D0 時等號成立

這個在證明柯西不等式時候會用到


柯西不等式

命題

(%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dx_iy_i)%5E2%5Cle(%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dx_i%5E2)(%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dy_i%5E2)?

數(shù)學(xué)歸納法證明:

n%3D1?時顯然成立

假設(shè)?n%3Dn?時成立,考慮?n%2B1

為了直觀我們記

%5Calpha%20%3D%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dx_i%5E2

%5Cbeta%20%3D%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dx_i%5E2

%5Cgamma%20%3D%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dx_iy_i

直接右減去左

(%5Csum_%7Bi%3D1%7D%5E%7Bn%2B1%7Dx_i%5E2)(%5Csum_%7Bi%3D1%7D%5E%7Bn%2B1%7Dy_i%5E2)%20-%20(%5Csum_%7Bi%3D1%7D%5E%7Bn%2B1%7Dx_iy_i)%5E2%20

代換

%3D%20(%5Calpha%2Bx_%7Bn%2B1%7D%5E2)(%5Cbeta%20%2B%20y_%7Bn%2B1%7D%5E2)-(%5Cgamma%20%2Bx_%7Bn%2B1%7Dy_%7Bn%2B1%7D)%5E2%20

%3D%20(%5Calpha%5Cbeta%20-%20%5Cgamma%5E2)%20%20%20%2B%20%5Calpha%20y%5E2_%7Bn%2B1%7D%2B%5Cbeta%20x%5E2_%7Bn%2B1%7D-2%5Cgamma%20x_%7Bn%2B1%7Dy_%7Bn%2B1%7D%20%20

其中?(%5Calpha%5Cbeta%20-%20%5Cgamma%5E2)%20%20%5Cge%200?

%5Calpha%20y%5E2_%7Bn%2B1%7D%2B%5Cbeta%20x%5E2_%7Bn%2B1%7D-2%5Cgamma%20x_%7Bn%2B1%7Dy_%7Bn%2B1%7D%20%20?使用均值不等式

%5Cge%202%5Csqrt%7B%5Calpha%5Cbeta%20x%5E2_%7Bn%2B1%7D%20y%5E2_%7Bn%2B1%7D%7D-2%5Cgamma%20x_%7Bn%2B1%7Dy_%7Bn%2B1%7D%20%20? 使用?%5Calpha%20%5Cbeta%20%5Cge%20%5Cgamma%5E2 得到?%5Csqrt%7B%5Calpha%20%5Cbeta%7D%20%5Cge%20%7C%5Cgamma%7C

%5Cge2%20(%7C%5Cgamma%20x_%7Bn%2B1%7Dy_%7Bn%2B1%7D%7C-%5Cgamma%20x_%7Bn%2B1%7Dy_%7Bn%2B1%7D)?

%5Cge%200?


平方平均大于等于算數(shù)平均

代入柯西不等式

(%5Csum_%7Bi%3D1%7D%5Enx_i%5Ccdot%201)%5E2%20%5Cle%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dx_i%5E2%5Csum_%7Bi%3D1%7D%5En1%5E2%20%5Cle%20n%5Csum_%7Bi%3D1%7D%5Enx_i%5E2

%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dx_i%20%5Cle%5Csqrt%7Bn%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dx_i%5E2%7D

同時除以?n

%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5Enx_i%7D%7Bn%7D%20%5Cle%20%5Csqrt%7B%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dx_i%5E2%7D%7Bn%7D%7D


算數(shù)平均大于幾何平均

?%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5E%7Bn%7Dx_i%7D%7Bn%7D%5Cge%20(%5Cprod_%7Bi%3D1%7D%5E%7Bn%7Dx_i)%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D???

首先歸納法證明?n%3D2%5Ek 時成立

k%3D1 時易證

考慮?k%2B1

%5Calpha%20%3D%20%5Csum_%7Bi%3D1%7D%5E%7B2%5Ek%7Dx_i

%5Cbeta%20%3D%20%5Csum_%7Bi%3D2%5Ek%2B1%7D%5E%7B2%5E%7Bk%2B1%7D%7Dx_i

%5Csum_%7Bi%3D1%7D%5E%7B2%5E%7Bk%2B1%7D%7Dx_i%3D%5Calpha%2B%5Cbeta%20%5Cge%202%5Csqrt%7B%5Calpha%20%5Cbeta%7D

其中

%5Calpha%20%3D%20%5Csum_%7Bi%3D1%7D%5E%7B2%5Ek%7Dx_i%20%5Cge%202%5Ek%20(%5Cprod_%7Bi%3D1%7D%5E%7B2%5Ek%7Dx_i)%5E%7B%5Cfrac%7B1%7D%7B2%5Ek%7D%7D

%5Cbeta%20%3D%20%5Csum_%7Bi%3D2%5Ek%2B1%7D%5E%7B2%5E%7Bk%2B1%7D%7Dx_i%20%5Cge%202%5Ek%20%0A%20(%5Cprod_%7Bi%3D2%5Ek%2B1%7D%5E%7B2%5E%7Bk%2B1%7D%7Dx_i)%5E%7B%5Cfrac%7B1%7D%7B2%5Ek%7D%7D

所以

%5Calpha%20%5Cbeta%20%5Cge%202%5E%7B2k%7D%20(%5Cprod_%7Bi%3D1%7D%5E%7B2%5E%7Bk%2B1%7D%7Dx_i)%5E%7B%5Cfrac%7B1%7D%7B2%5Ek%7D%7D

2%5Csqrt%7B%5Calpha%20%5Cbeta%7D%20%5Cge%202%5E%7Bk%2B1%7D%20%20(%5Cprod_%7Bi%3D1%7D%5E%7B2%5E%7Bk%2B1%7D%7Dx_i)%5E%7B%5Cfrac%7B1%7D%7B2%5E%7Bk%2B1%7D%7D%7D


嘗試證明更一般的?n%3Dk, n%20%5Cne%202%5Em時成立

p%3D2%5Ek??%5Coverline%7Bx%7D%20%3D%20%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5E%7Bk%7D%7Bx_i%7D%7D%7Bk%7D??

令?y_i%3D%20%5Cbegin%7Bcases%7D%0Ax_i%2C%5Cquad%20%26x%5Cleq%20k%20%5C%5C%0A%5Coverline%7Bx%7D%2C%5Cquad%20%26%20k%20%3C%20x%20%5Cle%20p%0A%5Cend%7Bcases%7D%20

%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5E%7Bp%7Dy_i%7D%7Bp%7D%20%3D%20%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5E%7Bk%7Dx_i%20%2B%20%5Csum_%7Bi%3Dk%2B1%7D%5E%7Bp%7D%5Coverline%7Bx%7D%20%7D%7Bp%7D%20%5Cge%20(%5Cprod_%7Bi%3D1%7D%5E%7Bp%7Dy_i)%5E%5Cfrac%7B1%7D%7Bp%7D

%5Cfrac%7Bk%5Coverline%7Bx%7D%20%2B%20(p-k)%5Coverline%7Bx%7D%20%7D%7Bp%7D%20%5Cge%20(%5Cprod_%7Bi%3D1%7D%5E%7Bp%7Dy_i)%5E%5Cfrac%7B1%7D%7Bp%7D%20%5Cge%20(%5Cprod_%7Bi%3D1%7D%5E%7Bk%7Dx_i)%5E%7B%5Cfrac%7B1%7D%7Bp%7D%7D((%5Coverline%7Bx%7D)%5E%7Bp-k%7D)%5E%7B%5Cfrac%7B1%7D%7Bp%7D%7D

%5Coverline%7Bx%7D%20%5Cge%20(%5Cprod_%7Bi%3D1%7D%5E%7Bk%7Dx_i)%5E%7B%5Cfrac%7B1%7D%7Bp%7D%7D((%5Coverline%7Bx%7D)%5E%7Bp-k%7D)%5E%7B%5Cfrac%7B1%7D%7Bp%7D%7D? 兩邊同時作?p?次冪

(%5Coverline%7Bx%7D)%5Ep%20%5Cge%20(%5Cprod_%7Bi%3D1%7D%5E%7Bk%7Dx_i)%5E%7B%7D((%5Coverline%7Bx%7D)%5E%7Bp-k%7D)?兩邊同時乘以?(%5Coverline%7Bx%7D)%5E%7Bk-p%7D

(%5Coverline%7Bx%7D)%5Ek%20%5Cge%20%5Cprod_%7Bi%3D1%7D%5E%7Bk%7Dx_i 兩邊同時作?%5Cfrac%7B1%7D%7Bk%7D 次冪

%5Coverline%7Bx%7D%20%5Cge%20(%5Cprod_%7Bi%3D1%7D%5E%7Bk%7Dx_i)%5E%7B%5Cfrac%7B1%7D%7Bk%7D%7D 得證


幾何平均大于等于調(diào)和平均


把上面不等式里面的?x_i 換成?%5Cfrac%7B1%7D%7Bx_i%7D?得到

%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Bx_i%7D%20%5Cge%20n(%5Cprod_%7Bi%3D1%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Bx_i%7D)%5E%5Cfrac%7B1%7D%7Bn%7D%20%5Cge%20n%20%5Cfrac%7B1%7D%7B(%5Cprod_%7Bi%3D1%7D%5E%7Bn%7Dx_i)%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%7D

兩邊同時取倒數(shù) 得到

(%5Cprod_%7Bi%3D1%7D%5E%7Bn%7Dx_i)%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%20%5Cge%20%5Cfrac%7Bn%7D%7B%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Bx_i%7D%7D


三角不等式

%7C%5C%7C%5Cmathrm%7Bx%7D%5C%7C-%5C%7C%5Cmathrm%7By%7D%5C%7C%7C%20%5Cle%20%5C%7C%5Cmathrm%7B%5Cmathrm%7Bx%7D-%5Cmathrm%7By%7D%7D%5C%7C%20%5Cle%20%5C%7C%5Cmathrm%7B%5Cmathrm%7Bx%7D%7D%5C%7C%20%20%2B%20%20%5C%7C%5Cmathrm%7B%5Cmathrm%7By%7D%7D%5C%7C%20%0A

先證明左邊的部分

記?L%3D%7C%5C%7C%5Cmathrm%7Bx%7D%5C%7C-%5C%7C%5Cmathrm%7By%7D%5C%7C%7C%20?

R%3D%5C%7C%5Cmathrm%7B%5Cmathrm%7Bx%7D-%5Cmathrm%7By%7D%7D%5C%7C

L%5E2%3D%5Csum_%7Bi%7Dx_i%5E2%20%2B%20%5Csum_%7Bi%7Dy_i%5E2-2%5Csqrt%7B(%5Csum_%7Bi%7Dx_i%5E2)%20(%5Csum_%7Bi%7Dy_i%5E2)%7D

R%5E2%3D%5Csum_%7Bi%7Dx_i%5E2%20%2B%20%5Csum_%7Bi%7Dy_i%5E2-2%5Csum_%7Bi%7Dx_iy_i

%5Cfrac%7BR%5E2-L%5E2%7D%7B2%7D%3D%5Csqrt%7B(%5Csum_%7Bi%7Dx_i%5E2)%20(%5Csum_%7Bi%7Dy_i%5E2)%7D%20-%5Csum_%7Bi%7Dx_iy_i

應(yīng)用柯西不等式得到

%5Csqrt%7B(%5Csum_%7Bi%7Dx_i%5E2)%20(%5Csum_%7Bi%7Dy_i%5E2)%7D%20-%5Csum_%7Bi%7Dx_iy_i%20%5Cge%20%7C%5Csum_%7Bi%7Dx_iy_i%7C%20-%5Csum_%7Bi%7Dx_iy_i

所以?R%5E2%3EL%5E2

R%3EL


再證明右邊部分

記?R%3D%5C%7C%5Cmathrm%7Bx%7D%5C%7C%2B%5C%7C%5Cmathrm%7By%7D%5C%7C?

L%3D%5C%7C%5Cmathrm%7B%5Cmathrm%7Bx%7D-%5Cmathrm%7By%7D%7D%5C%7C

同理有

R%5E2-L%5E2%3D2%5Csqrt%7B(%5Csum_%7Bi%7Dx_i%5E2)%20(%5Csum_%7Bi%7Dy_i%5E2)%7D-2%5Csum_%7Bi%7Dx_iy_i

%5Cge2(%20%7C%5Csum_%7Bi%7Dx_iy_i%7C%20-%5Csum_%7Bi%7Dx_iy_i)%20%5Cge%200


三角不等式的一個重要變形?

在多元函數(shù)微分學(xué)里面經(jīng)常用到

%20%5C%7C%5Cmathrm%7B%5Cmathrm%7Bx%7D%7D%5C%7C%3D%5C%7C%20%5Csum_%7Bi%7Dx_ie_i%20%5C%7C%20%5Cle%20%20%5Csum_i%20%5C%7C%20x_ie_i%5C%7C%20%5Cle%20%5Csum_%7Bi%7D%20%7Cx_i%7C

一些基本不等式的證明的評論 (共 條)

分享到微博請遵守國家法律
耒阳市| 隆尧县| 兴城市| 山丹县| 巩留县| 甘孜县| 大新县| 柞水县| 铜川市| 仙居县| 托克逊县| 广宁县| 光山县| 宜春市| 黑河市| 如东县| 西充县| 馆陶县| 长汀县| 高要市| 正宁县| 教育| 崇信县| 右玉县| 马山县| 德化县| 潼关县| 平江县| 犍为县| 嘉禾县| 汝南县| 温宿县| 伽师县| 方山县| 黔西县| 博野县| 澄城县| 汝阳县| 平陆县| 五台县| 丽水市|