最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

橢圓第二定義的證明方法(2018課標(biāo)Ⅲ圓錐曲線)

2022-08-25 18:02 作者:數(shù)學(xué)老頑童  | 我要投稿


解:(1)易知%5Ccolor%7Bred%7D%7BM%7D在橢圓內(nèi)部,

所以%5Ccolor%7Bred%7D%7B%5Cfrac%7B1%5E2%7D%7B4%7D%2B%5Cfrac%7Bm%5E2%7D%7B3%7D%3C1%7D,

解得-%5Cfrac%7B3%7D%7B2%7D%3Cm%3C%5Cfrac%7B3%7D%7B2%7D,

又因m%3E0,

所以%5Ccolor%7Bred%7D%7B0%3Cm%3C%5Cfrac%7B3%7D%7B2%7D%7D……%5Cotimes%20

設(shè)A、B的坐標(biāo)分別為%5Cleft(%20x_1%2Cy_1%20%5Cright)%20%5Cleft(%20x_2%2Cy_2%20%5Cright)%20,

因?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=A" alt="A">、B在橢圓C上,

所以%5Cfrac%7Bx_%7B1%7D%5E%7B2%7D%7D%7B4%7D%2B%5Cfrac%7By_%7B1%7D%5E%7B2%7D%7D%7B3%7D%3D1%5Cfrac%7Bx_%7B2%7D%5E%7B2%7D%7D%7B4%7D%2B%5Cfrac%7By_%7B2%7D%5E%7B2%7D%7D%7B3%7D%3D1,

兩式相減(即點(diǎn)差法)得

%5Cfrac%7Bx_%7B1%7D%5E%7B2%7D-x_%7B2%7D%5E%7B2%7D%7D%7B4%7D%2B%5Cfrac%7By_%7B1%7D%5E%7B2%7D-y_%7B2%7D%5E%7B2%7D%7D%7B3%7D%3D0,

%5Cfrac%7By_%7B1%7D%5E%7B2%7D-y_%7B2%7D%5E%7B2%7D%7D%7B3%7D%3D-%5Cfrac%7Bx_%7B1%7D%5E%7B2%7D-x_%7B2%7D%5E%7B2%7D%7D%7B4%7D,

%5Cfrac%7By_%7B1%7D%5E%7B2%7D-y_%7B2%7D%5E%7B2%7D%7D%7Bx_%7B1%7D%5E%7B2%7D-x_%7B2%7D%5E%7B2%7D%7D%3D-%5Cfrac%7B3%7D%7B4%7D

%5Cfrac%7B%5Cleft(%20y_1%2By_2%20%5Cright)%20%5Cleft(%20y_1-y_2%20%5Cright)%7D%7B%5Cleft(%20x_1%2Bx_2%20%5Cright)%20%5Cleft(%20x_1-x_2%20%5Cright)%7D%3D-%5Cfrac%7B3%7D%7B4%7D,

%5Cfrac%7B2m%5Ccdot%20%5Cleft(%20y_1-y_2%20%5Cright)%7D%7B2%5Ccdot%20%5Cleft(%20x_1-x_2%20%5Cright)%7D%3D-%5Cfrac%7B3%7D%7B4%7D,

%5Cfrac%7Bm%5Ccdot%20%5Cleft(%20y_1-y_2%20%5Cright)%7D%7Bx_1-x_2%7D%3D-%5Cfrac%7B3%7D%7B4%7D,

m%5Ccdot%20k%3D-%5Cfrac%7B3%7D%7B4%7D,

所以k%3D-%5Cfrac%7B3%7D%7B4m%7D,

%5Cotimes%20可知:k%3C-%5Cfrac%7B1%7D%7B2%7D,證畢.

(2)先畫圖

設(shè)P的坐標(biāo)為%5Cleft(%20x_3%2Cy_3%20%5Cright)%20

易知F的坐標(biāo)為%5Cleft(%201%2C0%20%5Cright)%20,所以

%5Cleft%7C%20%5Coverrightarrow%7BFA%7D%20%5Cright%7C%3D%5Cleft(%20x_1-1%2Cy_1%20%5Cright),

%5Cleft%7C%20%5Coverrightarrow%7BFB%7D%20%5Cright%7C%3D%5Cleft(%20x_2-1%2Cy_2%20%5Cright)

%5Cleft%7C%20%5Coverrightarrow%7BFP%7D%20%5Cright%7C%3D%5Cleft(%20x_3-1%2Cy_3%20%5Cright),

所以

%5Cleft(%20x_1-1%2Cy_1%20%5Cright)%20%2B%5Cleft(%20x_2-1%2Cy_2%20%5Cright)%20%2B%5Cleft(%20x_3-1%2Cy_3%20%5Cright)%20%3D%5Cmathbf%7B0%7D,

%5Cleft(%20x_1%2Bx_2%2Bx_3-3%2Cy_1%2By_2%2By_3%20%5Cright)%20%3D%5Cmathbf%7B0%7D,

%5Cbegin%7Bcases%7D%09x_1%2Bx_2%2Bx_3-3%3D0%2C%5C%5C%09y_1%2By_2%2By_3%3D0%2C%5C%5C%5Cend%7Bcases%7D

%5Cbegin%7Bcases%7D%092%5Ctimes%201%2Bx_3-3%3D0%2C%5C%5C%092%5Ccdot%20m%2By_3%3D0%2C%5C%5C%5Cend%7Bcases%7D

%5Cbegin%7Bcases%7D%09x_3%3D1%2C%5C%5C%09y_3%3D-2m%2C%5C%5C%5Cend%7Bcases%7D

所以P的坐標(biāo)為%5Cleft(%201%2C-2m%20%5Cright)%20

又因?yàn)辄c(diǎn)P在橢圓C上,所以

%5Cfrac%7B1%5E2%7D%7B4%7D%2B%5Cfrac%7B%5Cleft(%20-2m%20%5Cright)%20%5E2%7D%7B3%7D%3D1,

解得m%3D%5Cfrac%7B3%7D%7B4%7D,

所以P的坐標(biāo)為%5Cleft(%201%2C-%5Cfrac%7B3%7D%7B2%7D%20%5Cright)%20.

所以%5Cleft%7C%20%5Coverrightarrow%7BFP%7D%20%5Cright%7C%3D%5Ccolor%7Bred%7D%7B%5Cfrac%7B3%7D%7B2%7D%7D.

%5Cbegin%7Baligned%7D%09%5Cleft%7C%20%5Coverrightarrow%7BFA%7D%20%5Cright%7C%26%3D%5Csqrt%7B%5Cleft(%20x_1-1%20%5Cright)%20%5E2%2By_%7B1%7D%5E%7B2%7D%7D%5C%5C%09%26%3D%5Csqrt%7B%5Cleft(%20x_1-1%20%5Cright)%20%5E2%2B3%5Cleft(%201-%5Cfrac%7Bx_%7B1%7D%5E%7B2%7D%7D%7B4%7D%20%5Cright)%7D%5C%5C%09%26%3D%5Ccolor%7Bred%7D%7B%5Cfrac%7B1%7D%7B2%7D%7D%5Cleft%7C%20x_1-4%20%5Cright%7C%5C%5C%09%26%3D2-%5Cfrac%7B1%7D%7B2%7Dx_1%5C%5C%5Cend%7Baligned%7D

注意此處的操作,實(shí)際上證明了橢圓的第二定義

同理可得%5Cleft%7C%20%5Coverrightarrow%7BFB%7D%20%5Cright%7C%3D2-%5Cfrac%7B1%7D%7B2%7Dx_2.

所以

%5Cbegin%7Baligned%7D%09%5Cleft%7C%20%5Coverrightarrow%7BFA%7D%20%5Cright%7C%2B%5Cleft%7C%20%5Coverrightarrow%7BFB%7D%20%5Cright%7C%26%3D2-%5Cfrac%7B1%7D%7B2%7Dx_1%2B2-%5Cfrac%7B1%7D%7B2%7Dx_2%5C%5C%09%26%3D4-%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20x_1%2Bx_2%20%5Cright)%5C%5C%09%26%3D4-%5Cfrac%7B1%7D%7B2%7D%5Ctimes%202%3D%5Ccolor%7Bred%7D%7B3%7D%5C%5C%5Cend%7Baligned%7D

所以%5Cleft%7C%20%5Coverrightarrow%7BFA%7D%20%5Cright%7C%2B%5Cleft%7C%20%5Coverrightarrow%7BFB%7D%20%5Cright%7C%3D2%5Cleft%7C%20%5Coverrightarrow%7BFP%7D%20%5Cright%7C,

%5Cleft%7C%20%5Coverrightarrow%7BFA%7D%20%5Cright%7C、%5Cleft%7C%20%5Coverrightarrow%7BFP%7D%20%5Cright%7C、%5Cleft%7C%20%5Coverrightarrow%7BFB%7D%20%5Cright%7C成等差數(shù)列.

M的坐標(biāo)為%5Cleft(%201%2C%5Cfrac%7B3%7D%7B4%7D%20%5Cright)%20

k%3D-%5Cfrac%7B3%7D%7B4m%7D%3D-%5Cfrac%7B3%7D%7B4%5Ctimes%20%5Cfrac%7B3%7D%7B4%7D%7D%3D-1,

l的方程為y-%5Cfrac%7B3%7D%7B4%7D%3D-1%5Ctimes%20%5Cleft(%20x-1%20%5Cright)%20

y%3D%5Cfrac%7B7%7D%7B4%7D-x,

C的方程聯(lián)立,得x%5E2-2x%2B%5Cfrac%7B1%7D%7B28%7D%3D0

所以x_1x_2%3D%5Cfrac%7B1%7D%7B28%7D.

所以數(shù)列%5Cleft%7C%20%5Coverrightarrow%7BFA%7D%20%5Cright%7C、%5Cleft%7C%20%5Coverrightarrow%7BFP%7D%20%5Cright%7C%5Cleft%7C%20%5Coverrightarrow%7BFB%7D%20%5Cright%7C的公差

%5Cbegin%7Baligned%7D%0A%09d%26%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20%5Cleft%7C%20%5Coverrightarrow%7BFB%7D%20%5Cright%7C-%5Cleft%7C%20%5Coverrightarrow%7BFA%7D%20%5Cright%7C%20%5Cright)%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft%5B%20%5Cleft(%202-%5Cfrac%7B1%7D%7B2%7Dx_2%20%5Cright)%20-%5Cleft(%202-%5Cfrac%7B1%7D%7B2%7Dx_1%20%5Cright)%20%5Cright%5D%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B4%7D%5Cleft(%20x_1-x_2%20%5Cright)%5C%5C%0A%09%26%3D%5Cpm%20%5Cfrac%7B1%7D%7B4%7D%5Csqrt%7B%5Cleft(%20x_1%2Bx_2%20%5Cright)%20%5E2-4x_1x_2%7D%5C%5C%0A%09%26%3D%5Cpm%20%5Cfrac%7B1%7D%7B4%7D%5Csqrt%7B2%5E2-4%5Ctimes%20%5Cfrac%7B1%7D%7B28%7D%7D%3D%5Ccolor%7Bred%7D%7B%5Cpm%20%5Cfrac%7B3%5Csqrt%7B21%7D%7D%7B28%7D%7D%5C%5C%0A%5Cend%7Baligned%7D



橢圓第二定義的證明方法(2018課標(biāo)Ⅲ圓錐曲線)的評論 (共 條)

分享到微博請遵守國家法律
潼关县| 伊宁市| 临安市| 沂水县| 耿马| 吉木乃县| 弥渡县| 鹤峰县| 北宁市| 通渭县| 汝阳县| 佛学| 灵璧县| 昌黎县| 凤山市| 西乌珠穆沁旗| 常山县| 西林县| 凌云县| 陆良县| 香港| 萨迦县| 会昌县| 紫云| 莱州市| 徐闻县| 高台县| 太谷县| 高要市| 正宁县| 抚顺市| 伊通| 合肥市| 米易县| 大关县| 桐乡市| 墨江| 五华县| 襄汾县| 依安县| 衡山县|