最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

[Calculus] Heat Kernel

2021-11-03 19:13 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

Verify that the normal distribution

%20u(x%2Ct)%20%3D%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4%20%5Cpi%20kt%7D%7D%20%5Cexp%7B%5Cleft(-%5Cfrac%7Bx%5E2%7D%7B4kt%7D%5Cright)%7D

satisfies the heat equation [1] %20u_t%20%3D%20k%20u_%7Bxx%7D%20 (where k is a constant) for t%3E0, subject to the initial condition u(x%2C0)%3D%5Cdelta(x)%20, where %5Cdelta(x) is the Dirac delta function [2].

[1] The heat equation %20u_t%20%3D%20k%20u_%7Bxx%7D%20 is equivalent to %5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20t%7D%20%3D%20k%20%5Cfrac%7B%5Cpartial%5E2u%7D%7B%5Cpartial%20x%5E2%7D.

[2] The Dirac delta function is defined as %5Cdelta(x)%3D%5Cbegin%7Bcases%7D%20%0A%5Cinfty%2C%20%5Cquad%20x%3D0%20%5C%5C%0A0%2C%20%5Cquad%20x%20%5Cne%200%0A%5Cend%7Bcases%7D


Normal distributions


【Solution】

Take the first partial derivatives of %20u(x%2Ct) with respect to t.

%20u_t%20%3D%20%5Cfrac%7B-1%7D%7B2t%5Csqrt%7B4%20%5Cpi%20kt%7D%7D%20%5Cexp%7B%5Cleft(-%5Cfrac%7Bx%5E2%7D%7B4kt%7D%5Cright)%7D%20%2B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4%5Cpi%20kt%7D%7D%5Cleft(%5Cfrac%7Bx%5E2%7D%7B4kt%5E2%7D%5Cright)%5Cexp%7B%5Cleft(-%5Cfrac%7Bx%5E2%7D%7B4kt%7D%5Cright)%7D

u_t%20%3D%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4%5Cpi%20kt%7D%7D%20%5Cleft(%5Cfrac%7B-1%7D%7B2t%7D%20%2B%20%5Cfrac%7Bx%5E2%7D%7B4kt%5E2%7D%5Cright)%20%5Cexp%7B%5Cleft(-%5Cfrac%7Bx%5E2%7D%7B4kt%7D%5Cright)%7D

Take the first partial derivatives of u(x%2Ct)%20 with respect to x%20.

u_x%20%3D%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4%5Cpi%20kt%7D%7D%20%5Cleft(%5Cfrac%7B-2x%7D%7B4kt%7D%5Cright)%20%5Cexp%7B%5Cleft(%5Cfrac%7Bx%5E2%7D%7B4kt%7D%5Cright)%7D

Take the second partial derivatives of u(x%2Ct)%20 with respect to x%20.

u_%7Bxx%7D%20%3D%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4%5Cpi%20kt%7D%7D%20%5Cleft(%5Cfrac%7B-1%7D%7B2kt%7D%20%2B%20%5Cfrac%7Bx%5E2%7D%7B4k%5E2t%5E2%7D%5Cright)%20%5Cexp%7B%5Cleft(-%5Cfrac%7Bx%5E2%7D%7B4kt%7D%5Cright)%7D%20

Thus,

ku_%7Bxx%7D%20%3D%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4%5Cpi%20kt%7D%7D%20%5Cleft(%5Cfrac%7B-1%7D%7B2t%7D%20%2B%20%5Cfrac%7Bx%5E2%7D%7B4kt%5E2%7D%5Cright)%20%5Cexp%7B%5Cleft(-%5Cfrac%7Bx%5E2%7D%7B4kt%7D%5Cright)%7D

Both sides of the equation match; therefore, the partial differential equation
%20u_t%20%3D%20ku_%7Bxx%7D is satisfied.

Now for the initial condition. The Dirac delta function is actually a distribution, not a function. In fact the limit

?%5Clim_%7Bt%20%5Cto%200%7D%5Cfrac%7B1%7D%7B%5Csqrt%7B4%20%5Cpi%20kt%7D%7D%20%5Cexp%7B%5Cleft(-%5Cfrac%7Bx%5E2%7D%7B4kt%7D%5Cright)%7D%3D%20%5Cdelta%20(x)%20

automatically verifies the validity of this initial condition.

Dirac delta function


[Calculus] Heat Kernel的評論 (共 條)

分享到微博請遵守國家法律
藁城市| 大兴区| 乐昌市| 高陵县| 阜城县| 宁阳县| 衡山县| 金湖县| 平阴县| 辽宁省| 铁岭市| 黔东| 金堂县| 南平市| 城步| 开封县| 水城县| 韩城市| 五莲县| 平山县| 奉节县| 临颍县| 乌审旗| 江孜县| 奉节县| 江北区| 连平县| 彰化市| 开原市| 平陆县| 尤溪县| 六枝特区| 张北县| 江西省| 汉川市| 碌曲县| 迁西县| 巨鹿县| 东乌珠穆沁旗| 水城县| 商城县|