最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

【灰狼算法】基于改進(jìn)灰狼優(yōu)化算法求解單目標(biāo)優(yōu)化問題附matlab代碼

2022-04-27 12:02 作者:Matlab工程師  | 我要投稿

1 簡介

1.1 灰狼算法介紹

2 部分代碼

%___________________________________________________________________%% ?An Improved Grey Wolf Optimizer for Solving Engineering ? ? ? ? ?%% ?Problems (I-GWO) source codes version 1.0 ? ? ? ? ? ? ? ? ? ? ? ?%% ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? % ? ? ? ? ? %%___________________________________________________________________%% You can simply define your cost in a seperate file and load its handle to fobj % The initial parameters that you need are:%__________________________________________% fobj = @YourCostFunction% dim = number of your variables% Max_iteration = maximum number of generations% N = number of search agents% lb=[lb1,lb2,...,lbn] where lbn is the lower bound of variable n% ub=[ub1,ub2,...,ubn] where ubn is the upper bound of variable n% If all the variables have equal lower bound you can just% define lb and ub as two single number numbers% To run I-GWO: [Best_score,Best_pos,GWO_cg_curve]=IGWO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj)%__________________________________________close allclearclcAlgorithm_Name = 'I-GWO';N = 30; % Number of search agentsFunction_name='F2'; % Name of the test function that can be from F1 to F23 (Table 1,2,3 in the paper)Max_iteration = 500; % Maximum numbef of iterations% Load details of the selected benchmark function[lb,ub,dim,fobj]=Get_Functions_details(Function_name);[Fbest,Lbest,Convergence_curve]=IGWO(dim,N,Max_iteration,lb,ub,fobj);display(['The best solution obtained by I-GWO is : ', num2str(Lbest)]);display(['The best optimal value of the objective funciton found by I-GWO is : ', num2str(Fbest)]);figure('Position',[500 500 660 290])%Draw search spacesubplot(1,2,1);func_plot(Function_name);title('Parameter space')xlabel('x_1');ylabel('x_2');zlabel([Function_name,'( x_1 , x_2 )'])%Draw objective spacesubplot(1,2,2);semilogy(Convergence_curve,'Color','r')title('Objective space')xlabel('Iteration');ylabel('Best score obtained so far');axis tightgrid onbox onlegend('I-GWO')

3 仿真結(jié)果



4 參考文獻(xiàn)


博主簡介:擅長智能優(yōu)化算法、神經(jīng)網(wǎng)絡(luò)預(yù)測、信號處理、元胞自動機(jī)、圖像處理、路徑規(guī)劃、無人機(jī)等多種領(lǐng)域的Matlab仿真,相關(guān)matlab代碼問題可私信交流。

部分理論引用網(wǎng)絡(luò)文獻(xiàn),若有侵權(quán)聯(lián)系博主刪除。




【灰狼算法】基于改進(jìn)灰狼優(yōu)化算法求解單目標(biāo)優(yōu)化問題附matlab代碼的評論 (共 條)

分享到微博請遵守國家法律
崇明县| 浦江县| 鹿邑县| 安义县| 民和| 洛隆县| 永善县| 固阳县| 崇州市| 石楼县| 灵武市| 镇沅| 雅安市| 靖远县| 穆棱市| 越西县| 崇州市| 林甸县| 苍梧县| 临沂市| 当涂县| 理塘县| 南川市| 新津县| 栾城县| 涟水县| 马鞍山市| 临颍县| 通化市| 米脂县| 深圳市| 西乌珠穆沁旗| 咸丰县| 鹤岗市| 新巴尔虎左旗| 句容市| 慈溪市| 同江市| 鄱阳县| 调兵山市| 舒兰市|