R語言大數(shù)據(jù)分析紐約市的311萬條投訴統(tǒng)計可視化與時間序列分析
原文鏈接:http://tecdat.cn/?p=9800
?
?
介紹
?
本文并不表示R在數(shù)據(jù)分析方面比Python更好或更快速,我本人每天都使用兩種語言。這篇文章只是提供了比較這兩種語言的機(jī)會。
本文中的??數(shù)據(jù)??每天都會更新,我的文件版本更大,為4.63 GB。
CSV文件包含紐約市的311條投訴。它是紐約市開放數(shù)據(jù)門戶網(wǎng)站中最受歡迎的數(shù)據(jù)集。
?
數(shù)據(jù)工作流程
?
install.packages("devtools")
library("devtools")
install_github("ropensci/plotly")
library(plotly)
需要創(chuàng)建一個帳戶以連接到plotly API?;蛘?,可以只使用默認(rèn)的ggplot2圖形。
set_credentials_file("DemoAccount", "lr1c37zw81") ## Replace contents with your API Key
?
?
使用dplyr在R中進(jìn)行分析
?
假設(shè)已安裝sqlite3(因此可通過終端訪問)。
$ sqlite3 data.db # Create your database
$.databases ? ? ? # Show databases to make sure it works
$.mode csv
$.import <filename> <tablename>
# Where filename is the name of the csv & tablename is the name of the new database table
$.quit
將數(shù)據(jù)加載到內(nèi)存中。
library(readr)
# data.table, selecting a subset of columns
time_data.table <- system.time(fread('/users/ryankelly/NYC_data.csv',
select = c('Agency', 'Created Date','Closed Date', 'Complaint Type', 'Descriptor', 'City'),
showProgress = T))
kable(data.frame(rbind(time_data.table, time_data.table_full, time_readr)))
?user.selfsys.selfelapseduser.childsys.childtime_data.table63.5881.95265.63300time_data.table_full205.5713.124208.88000time_readr277.7205.018283.02900
我將使用data.table讀取數(shù)據(jù)。該?fread
?函數(shù)大大提高了讀取速度。
關(guān)于dplyr
?
默認(rèn)情況下,dplyr查詢只會從數(shù)據(jù)庫中提取前10行。
library(dplyr) ? ? ?## Will be used for pandas replacement
# Connect to the database
db <- src_sqlite('/users/ryankelly/data.db')
db
?
數(shù)據(jù)處理的兩個最佳選擇(除了R之外)是:
數(shù)據(jù)表
dplyr
預(yù)覽數(shù)據(jù)
?
# Wrapped in a function for display purposes
head_ <- function(x, n = 5) kable(head(x, n))
head_(data)
AgencyCreatedDateClosedDateComplaintTypeDescriptorCityNYPD04/11/2015 02:13:04 AM?Noise - Street/SidewalkLoud Music/PartyBROOKLYNDFTA04/11/2015 02:12:05 AM?Senior Center ComplaintN/AELMHURSTNYPD04/11/2015 02:11:46 AM?Noise - CommercialLoud Music/PartyJAMAICANYPD04/11/2015 02:11:02 AM?Noise - Street/SidewalkLoud TalkingBROOKLYNNYPD04/11/2015 02:10:45 AM?Noise - Street/SidewalkLoud Music/PartyNEW YORK
?
選擇幾列
ComplaintTypeDescriptorAgencyNoise - Street/SidewalkLoud Music/PartyNYPDSenior Center ComplaintN/ADFTANoise - CommercialLoud Music/PartyNYPDNoise - Street/SidewalkLoud TalkingNYPDNoise - Street/SidewalkLoud Music/PartyNYPD
?
?
ComplaintTypeDescriptorAgencyNoise - Street/SidewalkLoud Music/PartyNYPDSenior Center ComplaintN/ADFTANoise - CommercialLoud Music/PartyNYPDNoise - Street/SidewalkLoud TalkingNYPDNoise - Street/SidewalkLoud Music/PartyNYPDNoise - Street/SidewalkLoud TalkingNYPDNoise - CommercialLoud Music/PartyNYPDHPD Literature RequestThe ABCs of Housing - SpanishHPDNoise - Street/SidewalkLoud TalkingNYPDStreet ConditionPlate Condition - NoisyDOT
?
使用WHERE過濾行
ComplaintTypeDescriptorAgencyNoise - Street/SidewalkLoud Music/PartyNYPDNoise - CommercialLoud Music/PartyNYPDNoise - Street/SidewalkLoud TalkingNYPDNoise - Street/SidewalkLoud Music/PartyNYPDNoise - Street/SidewalkLoud TalkingNYPD
?
使用WHERE和IN過濾列中的多個值
ComplaintTypeDescriptorAgencyNoise - Street/SidewalkLoud Music/PartyNYPDNoise - CommercialLoud Music/PartyNYPDNoise - Street/SidewalkLoud TalkingNYPDNoise - Street/SidewalkLoud Music/PartyNYPDNoise - Street/SidewalkLoud TalkingNYPD
?
在DISTINCT列中查找唯一值
## ? ? ? City
## 1 BROOKLYN
## 2 ELMHURST
## 3 ?JAMAICA
## 4 NEW YORK
## 5
## 6 ?BAYSIDE
?
使用COUNT(*)和GROUP BY查詢值計數(shù)
# dt[, .(No.Complaints = .N), Agency]
#setkey(dt, No.Complaints) # setkey index's the data
q <- data %>% select(Agency) %>% group_by(Agency) %>% summarise(No.Complaints = n())
head_(q)
AgencyNo.Complaints3-1-122499ACS3AJC7ART3CAU8
?
使用ORDER和-排序結(jié)果
?

?

數(shù)據(jù)庫中有多少個城市?
# dt[, unique(City)]
q <- data %>% select(City) %>% distinct() %>% summarise(Number.of.Cities = n())
head(q)
## ? Number.of.Cities
## 1 ? ? ? ? ? ? 1818
讓我們來繪制10個最受關(guān)注的城市
?
CityNo.ComplaintsBROOKLYN2671085NEW YORK1692514BRONX1624292?766378STATEN ISLAND437395JAMAICA147133FLUSHING117669ASTORIA90570Jamaica67083RIDGEWOOD66411
?
?
用??
UPPER
?轉(zhuǎn)換CITY格式。
CITYNo.ComplaintsBROOKLYN2671085NEW YORK1692514BRONX1624292?766378STATEN ISLAND437395JAMAICA147133FLUSHING117669ASTORIA90570JAMAICA67083RIDGEWOOD66411
?
投訴類型(按城市)
# Plot result
plt <- ggplot(q_f, aes(ComplaintType, No.Complaints, fill = CITY)) +
geom_bar(stat = 'identity') +
theme_minimal() + theme(axis.text.x = element_text(angle = 45, hjust = 1))
plt

?
第2部分時間序列運算
提供的數(shù)據(jù)不適合SQLite的標(biāo)準(zhǔn)日期格式。
在SQL數(shù)據(jù)庫中創(chuàng)建一個新列,然后使用格式化的date語句重新插入數(shù)據(jù) 創(chuàng)建一個新表并將格式化日期插入原始列名。
使用時間戳字符串過濾SQLite行:YYYY-MM-DD hh:mm:ss
# dt[CreatedDate < '2014-11-26 23:47:00' & CreatedDate > '2014-09-16 23:45:00',
# ? ? ?.(ComplaintType, CreatedDate, City)]
q <- data %>% filter(CreatedDate < "2014-11-26 23:47:00", ? CreatedDate > "2014-09-16 23:45:00") %>%
select(ComplaintType, CreatedDate, City)
head_(q)
ComplaintTypeCreatedDateCityNoise - Street/Sidewalk2014-11-12 11:59:56BRONXTaxi Complaint2014-11-12 11:59:40BROOKLYNNoise - Commercial2014-11-12 11:58:53BROOKLYNNoise - Commercial2014-11-12 11:58:26NEW YORKNoise - Street/Sidewalk2014-11-12 11:58:14NEW YORK
?
使用strftime從時間戳中拉出小時單位
# dt[, hour := strftime('%H', CreatedDate), .(ComplaintType, CreatedDate, City)]
q <- data %>% mutate(hour = strftime('%H', CreatedDate)) %>%
select(ComplaintType, CreatedDate, City, hour)
head_(q)
?
ComplaintTypeCreatedDateCityhourNoise - Street/Sidewalk2015-11-04 02:13:04BROOKLYN02Senior Center Complaint2015-11-04 02:12:05ELMHURST02Noise - Commercial2015-11-04 02:11:46JAMAICA02Noise - Street/Sidewalk2015-11-04 02:11:02BROOKLYN02Noise - Street/Sidewalk2015-11-04 02:10:45NEW YORK02
?




匯總時間序列
首先,創(chuàng)建一個時間戳記四舍五入到前15分鐘間隔的新列
# Using lubridate::new_period()
# dt[, interval := CreatedDate - new_period(900, 'seconds')][, .(CreatedDate, interval)]
q <- data %>%
mutate(interval = sql("datetime((strftime('%s', CreatedDate) / 900) * 900, 'unixepoch')")) %>%
select(CreatedDate, interval)
head_(q, 10)
CreatedDateinterval2015-11-04 02:13:042015-11-04 02:00:002015-11-04 02:12:052015-11-04 02:00:002015-11-04 02:11:462015-11-04 02:00:002015-11-04 02:11:022015-11-04 02:00:002015-11-04 02:10:452015-11-04 02:00:002015-11-04 02:09:072015-11-04 02:00:002015-11-04 02:05:472015-11-04 02:00:002015-11-04 02:03:432015-11-04 02:00:002015-11-04 02:03:292015-11-04 02:00:002015-11-04 02:02:172015-11-04 02:00:00
?
繪制2003年的結(jié)果



