42篇深度圖神經(jīng)網(wǎng)絡(luò)(GNN)的論文!真香!
最近(其實(shí)也就是今天)學(xué)姐開(kāi)始了科(fan)學(xué)(qiang)上網(wǎng),在逛github時(shí)候發(fā)現(xiàn)了一個(gè)寶藏——一位大佬分享的有關(guān)乎深度圖神經(jīng)網(wǎng)絡(luò)的相關(guān)論文。

剛好學(xué)姐最近也在整理圖神經(jīng)網(wǎng)絡(luò)的論文給微信上的小伙伴,學(xué)姐想大家伙肯定也需要這個(gè)就趕緊安排了今天的推文!

part1/經(jīng)典款論文
1. KDD 2016,Node2vec?經(jīng)典必讀第一篇,平衡同質(zhì)性和結(jié)構(gòu)性
《node2vec: Scalable Feature Learning for Networks》
2. WWW2015,LINE?1階+2階相似度
《Line: Large-scale information network embedding》
3. KDD 2016,SDNE?多層自編碼器
《Structural deep network embedding》
4. KDD 2017,metapath2vec??異構(gòu)圖網(wǎng)絡(luò)
《metapath2vec: Scalable representation learning for heterogeneous networks》
5. NIPS 2013,TransE??知識(shí)圖譜奠基
《Translating Embeddings for Modeling Multi-relational Data》
6. ICLR 2018,GAT??attention機(jī)制
《Graph Attention Network》
7. NIPS 2017,GraphSAGE??歸納式學(xué)習(xí)框架
《Inductive Representation Learning on Large Graphs 》
8. ICLR 2017,GCN?圖神經(jīng)開(kāi)山之作
《SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS》
9. ICLR 2016,GGNN?門控圖神經(jīng)網(wǎng)絡(luò)
《Gated Graph Sequence Neural Networks》
10. ICML 2017,MPNN??空域卷積消息傳遞框架
《Neural Message Passing for Quantum Chemistry》
如果你不知道怎么讀論文可以先加學(xué)姐微信咱具體嘮嘮,因?yàn)樵趺醋x論文的推文下周才發(fā),嘻嘻。

part2/熱門款論文
2020年之前
11.[arXiv 2019]Revisiting Graph Neural Networks: All We Have is Low-Pass Filters
重溫圖神經(jīng)網(wǎng)絡(luò):我們只有低通濾波器
[論文]
https://arxiv.org/abs/1905.09550
12.[NeurIPS 2019]Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
打破天花板:更強(qiáng)的多尺度深度圖卷積網(wǎng)絡(luò)
[論文]?
https://arxiv.org/abs/1906.02174
13.[ICLR 2019]?Predict then Propagate: Graph Neural Networks meet Personalized PageRank
先預(yù)測(cè)后傳播:圖神經(jīng)網(wǎng)絡(luò)滿足個(gè)性化 PageRank
[論文]?
https://arxiv.org/abs/1810.05997
[代碼]?
https://github.com/klicperajo/ppnp
14.[ICCV 2019]DeepGCNs: Can GCNs Go as Deep as CNNs?
DeepGCN:GCN能像CNN一樣深入嗎?
[論文]?
https://arxiv.org/abs/1904.03751
[代碼(Pytorch)]
https://github.com/lightaime/deep_gcns_torch
[代碼(TensorFlow)]
https://github.com/lightaime/deep_gcns
15.[ICML 2018]
Representation Learning on Graphs with Jumping Knowledge Networks
基于跳躍知識(shí)網(wǎng)絡(luò)的圖表征學(xué)習(xí)
[論文]?
https://arxiv.org/abs/1806.03536
16.[AAAI 2018]Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning
深入了解用于半監(jiān)督學(xué)習(xí)的圖卷積網(wǎng)絡(luò)
[論文]?
https://arxiv.org/abs/1801.07606
2020年
17.[arXiv 2020]Deep Graph Neural Networks with Shallow Subgraph Samplers
具有淺子圖采樣器的深圖神經(jīng)網(wǎng)絡(luò)
[論文]?
https://arxiv.org/abs/2012.01380
18.[arXiv 2020]Revisiting Graph Convolutional Network on Semi-Supervised Node Classification from an Optimization Perspective
從優(yōu)化的角度重新審視半監(jiān)督節(jié)點(diǎn)分類的圖卷積網(wǎng)絡(luò)
[論文]?
https://arxiv.org/abs/2009.11469
19.[arXiv 2020]
Tackling Over-Smoothing for General Graph Convolutional Networks
解決通用圖卷積網(wǎng)絡(luò)的過(guò)度平滑
[論文]?
https://arxiv.org/abs/2008.09864
20.[arXiv 2020]DeeperGCN: All You Need to Train Deeper GCNs
DeeperGCN:訓(xùn)練更深的 GCN 所需的一切
[論文]?
https://arxiv.org/abs/2006.07739
[代碼]
https://github.com/lightaime/deep_gcns_torch
21.[arXiv 2020]Effective Training Strategies for Deep Graph Neural Networks
深度圖神經(jīng)網(wǎng)絡(luò)的有效訓(xùn)練策略
[論文]?
https://arxiv.org/abs/2006.07107
[代碼]?
https://github.com/miafei/NodeNorm
22.[arXiv 2020]Revisiting Over-smoothing in Deep GCNs
重新審視深度GCN中的過(guò)度平滑?
[論文]?
https://arxiv.org/abs/2003.13663
23.[NeurIPS 2020]Graph Random Neural Networks for Semi-Supervised Learning on Graphs
用于圖上半監(jiān)督學(xué)習(xí)的圖隨機(jī)神經(jīng)網(wǎng)絡(luò)
[論文]?
https://proceedings.neurips.cc/paper/2020/hash/fb4c835feb0a65cc39739320d7a51c02-Abstract.html
[代碼]?
https://github.com/THUDM/GRAND
24.[NeurIPS 2020]Scattering GCN: Overcoming Oversmoothness in Graph Convolutional Networks
散射GCN:克服圖卷積網(wǎng)絡(luò)中的過(guò)度平滑
[論文]?
https://proceedings.neurips.cc/paper/2020/hash/a6b964c0bb675116a15ef1325b01ff45-Abstract.html
[代碼]?
https://github.com/dms-net/scatteringGCN
25.[NeurIPS 2020]Optimization and Generalization Analysis of Transduction through Gradient Boosting and Application to Multi-scale Graph Neural Networks
Transduction through Gradient Boosting 的優(yōu)化和泛化分析及其在多尺度圖神經(jīng)網(wǎng)絡(luò)中的應(yīng)用
[論文]?
https://proceedings.neurips.cc/paper/2020/hash/dab49080d80c724aad5ebf158d63df41-Abstract.html
[代碼]?
https://github.com/delta2323/GB-GNN
26.[NeurIPS 2020]Towards Deeper Graph Neural Networks with Differentiable Group Normalization
邁向具有可微組歸一化的更深圖神經(jīng)網(wǎng)絡(luò)
[論文]?
https://arxiv.org/abs/2006.06972
27.[ICML 2020 Workshop GRL+]A Note on Over-Smoothing for Graph Neural Networks
關(guān)于圖神經(jīng)網(wǎng)絡(luò)過(guò)度平滑的說(shuō)明
[論文]?
https://arxiv.org/abs/2006.13318
28.[ICML 2020]Bayesian Graph Neural Networks with Adaptive Connection Sampling
具有自適應(yīng)連接采樣的貝葉斯圖神經(jīng)網(wǎng)絡(luò)
[論文]?
https://arxiv.org/abs/2006.04064
29.[ICML 2020]Continuous Graph Neural Networks連續(xù)圖神經(jīng)網(wǎng)絡(luò)
[論文]?
https://arxiv.org/abs/1912.00967
30.[ICML 2020]Simple and Deep Graph Convolutional Networks簡(jiǎn)單和深度圖卷積網(wǎng)絡(luò)
[論文]?
https://arxiv.org/abs/2007.02133
[代碼]?
https://github.com/chennnM/GCNII
31.[KDD 2020]?Towards Deeper Graph Neural Networks走向更深的圖神經(jīng)網(wǎng)絡(luò)
[論文]?
https://arxiv.org/abs/2007.09296
[代碼]?
https://github.com/mengliu1998/DeeperGNN
32.[ICLR 2020]Graph Neural Networks Exponentially Lose Expressive Power for Node Classification
圖神經(jīng)網(wǎng)絡(luò)對(duì)節(jié)點(diǎn)分類的表達(dá)能力呈指數(shù)級(jí)?下降
[論文]?
https://arxiv.org/abs/1905.10947
[代碼]?
https://github.com/delta2323/gnn-asymptotics
33.[ICLR 2020]?DropEdge: Towards Deep Graph Convolutional Networks on Node Classification
DropEdge:邁向節(jié)點(diǎn)分類的深度圖卷積網(wǎng)絡(luò)
[Paper]?
https://openreview.net/forum?id=Hkx1qkrKPr
[Code]?
https://github.com/DropEdge/DropEdge
34.[ICLR 2020]?PairNorm: Tackling Oversmoothing in GNNs
PairNorm:解決GNN中的過(guò)度平滑問(wèn)題
[論文]
https://openreview.net/forum?id=rkecl1rtwB
[代碼]
https://github.com/LingxiaoShawn/PairNorm
35.[ICLR 2020]Measuring and Improving the Use of Graph Information in Graph Neural Networks
測(cè)量和改進(jìn)圖神經(jīng)網(wǎng)絡(luò)中圖信息的使用
[論文]?
https://openreview.net/forum?id=rkeIIkHKvS
[代碼]?
https://github.com/yifan-h/CS-GNN
36.[AAAI 2020]Measuring and Relieving the Over-smoothing Problem for Graph Neural Networks from the Topological View
從拓?fù)浣嵌葴y(cè)量和緩解圖神經(jīng)網(wǎng)絡(luò)的過(guò)度平滑問(wèn)題
[論文]?
https://arxiv.org/abs/1909.03211
同學(xué)們是不是發(fā)現(xiàn)有些論文有代碼,有些論文沒(méi)有代碼?學(xué)姐建議學(xué)概念讀沒(méi)代碼的,然后再讀有代碼的,原因的話上周的文章有寫(xiě),花幾分鐘看一下【學(xué)姐帶你玩AI】公眾號(hào)的——《圖像識(shí)別深度學(xué)習(xí)研究方向沒(méi)有導(dǎo)師帶該怎么學(xué)習(xí)》
part3/最新款論文
37.[arXiv 2021]Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks
同一枚硬幣的兩面:圖卷積神經(jīng)網(wǎng)絡(luò)中的異質(zhì)性和過(guò)度平滑
[論文]?
https://arxiv.org/abs/2102.06462v2
38.[arXiv 2021]Graph Neural Networks Inspired by Classical Iterative Algorithms
受經(jīng)典迭代算法啟發(fā)的圖神經(jīng)網(wǎng)絡(luò)
[論文]?
https://arxiv.org/abs/2103.06064
39.[ICML 2021]Training Graph Neural Networks with 1000 Layers
訓(xùn)練 1000 層圖神經(jīng)網(wǎng)絡(luò)
[論文]?
https://arxiv.org/abs/2106.07476
[代碼]
https://github.com/lightaime/deep_gcns_torch
40.[ICML 2021]?Directional Graph Networks?方向圖網(wǎng)絡(luò)
[論文]?
https://arxiv.org/abs/2010.02863
[代碼]?
https://github.com/Saro00/DGN
41.[ICLR 2021]On the Bottleneck of Graph Neural Networks and its Practical Implications
關(guān)于圖神經(jīng)網(wǎng)絡(luò)的瓶頸及其實(shí)際意義
[論文]?
https://openreview.net/forum?id=i80OPhOCVH2
[代碼]?https://github.com/tech-srl/bottleneck/
42.[ICLR 2021]?Adaptive Universal Generalized PageRank Graph Neural Network
[論文]?
https://openreview.net/forum?id=n6jl7fLxrP
[代碼]
https://github.com/jianhao2016/GPRGNN
43.[ICLR 2021]Simple Spectral Graph Convolution
簡(jiǎn)單的譜圖卷積
[論文]
https://openreview.net/forum?id=CYO5T-YjWZV
githup原文:
https://github.com/mengliu1998/awesome-deep-gnn
以上就是學(xué)姐找到的論文了,讀論文的方法可以關(guān)注【學(xué)姐帶你玩兒AI】等到下周看學(xué)姐的推文

或者是直接私聊學(xué)姐聊一下自己的想法~~

給學(xué)姐點(diǎn)個(gè)贊吧!這是我肝文章的動(dòng)力!有問(wèn)題評(píng)論區(qū)直接找學(xué)姐!