【RVM分類】基于麻雀搜索算法優(yōu)化相關(guān)向量機(jī)實(shí)現(xiàn)數(shù)據(jù)分類附matlab代碼
1 簡介
目前常用的一些基本的故障診斷,故障預(yù)測方法都將大樣本數(shù)據(jù)作為基礎(chǔ),但在實(shí)際問題中常常能得到的故障數(shù)據(jù)都屬于小樣本類型.傳統(tǒng)的故障診斷,故障預(yù)測方法已不適于用來解決小樣本類型的故障問題.相關(guān)向量機(jī)(Relevance Vector Machine,簡稱RVM)是新提出的以支持向量機(jī)(Support Vector Machine,簡稱SVM)為基礎(chǔ)的模型,該模型更適應(yīng)于解決小樣本問題.已經(jīng)被應(yīng)用于語音及圖像處理,醫(yī)學(xué)診斷,模式分類等很多領(lǐng)域.



2 部分代碼
%_________________________________________________________________________%
% 麻雀優(yōu)化算法 ? ? ? ? ? ? %
%_________________________________________________________________________%
function [Best_pos,Best_score,curve]=SSA(pop,Max_iter,lb,ub,dim,fobj)
ST = 0.6;%預(yù)警值
PD = 0.7;%發(fā)現(xiàn)者的比列,剩下的是加入者
SD = 0.2;%意識(shí)到有危險(xiǎn)麻雀的比重
PDNumber = pop*PD; %發(fā)現(xiàn)者數(shù)量
SDNumber = pop - pop*PD;%意識(shí)到有危險(xiǎn)麻雀數(shù)量
if(max(size(ub)) == 1)
? ub = ub.*ones(1,dim);
? lb = lb.*ones(1,dim); ?
end
%種群初始化
X0=initialization(pop,dim,ub,lb);
X = X0;
%計(jì)算初始適應(yīng)度值
fitness = zeros(1,pop);
for i = 1:pop
? fitness(i) = ?fobj(X(i,:));
end
[fitness, index]= sort(fitness);%排序
BestF = fitness(1);
WorstF = fitness(end);
GBestF = fitness(1);%全局最優(yōu)適應(yīng)度值
for i = 1:pop
? ?X(i,:) = X0(index(i),:);
end
curve=zeros(1,Max_iter);
GBestX = X(1,:);%全局最優(yōu)位置
X_new = X;
for i = 1: Max_iter
? ?BestF = fitness(1);
? ?WorstF = fitness(end);
? ?R2 = rand(1);
? for j = 1:PDNumber
? ? ?if(R2<ST)
? ? ? ? ?X_new(j,:) = X(j,:).*exp(-j/(rand(1)*Max_iter));
? ? ?else
? ? ? ? ?X_new(j,:) = X(j,:) + randn()*ones(1,dim);
? ? ?end ? ?
? end
? for j = PDNumber+1:pop
% ? ? ? ?if(j>(pop/2))
? ? ? ?if(j>(pop - PDNumber)/2 + PDNumber)
? ? ? ? ?X_new(j,:)= randn().*exp((X(end,:) - X(j,:))/j^2);
? ? ? else
? ? ? ? ?%產(chǎn)生-1,1的隨機(jī)數(shù)
? ? ? ? ?A = ones(1,dim);
? ? ? ? ?for a = 1:dim
? ? ? ? ? ?if(rand()>0.5)
? ? ? ? ? ? ? ?A(a) = -1;
? ? ? ? ? ?end
? ? ? ? ?end
? ? ? ? ?AA = A'*inv(A*A'); ? ?
? ? ? ? ?X_new(j,:)= X(1,:) + abs(X(j,:) - X(1,:)).*AA';
? ? ? end
? end
? Temp = randperm(pop);
? SDchooseIndex = Temp(1:SDNumber);
? for j = 1:SDNumber
? ? ? if(fitness(SDchooseIndex(j))>BestF)
? ? ? ? ? X_new(SDchooseIndex(j),:) = X(1,:) + randn().*abs(X(SDchooseIndex(j),:) - X(1,:));
? ? ? elseif(fitness(SDchooseIndex(j))== BestF)
? ? ? ? ? K = 2*rand() -1;
? ? ? ? ? X_new(SDchooseIndex(j),:) = X(SDchooseIndex(j),:) + K.*(abs( X(SDchooseIndex(j),:) - X(end,:))./(fitness(SDchooseIndex(j)) - fitness(end) + 10^-8));
? ? ? end
? end
? %邊界控制
? for j = 1:pop
? ? ? for a = 1: dim
? ? ? ? ? if(X_new(j,a)>ub)
? ? ? ? ? ? ? X_new(j,a) =ub(a);
? ? ? ? ? end
? ? ? ? ? if(X_new(j,a)<lb)
? ? ? ? ? ? ? X_new(j,a) =lb(a);
? ? ? ? ? end
? ? ? end
? end
? %更新位置
? for j=1:pop
? ?fitness_new(j) = fobj(X_new(j,:));
? end
? for j = 1:pop
? ?if(fitness_new(j) < GBestF)
? ? ? GBestF = fitness_new(j);
? ? ? ?GBestX = X_new(j,:); ?
? ?end
? end
? X = X_new;
? fitness = fitness_new;
? ?%排序更新
? [fitness, index]= sort(fitness);%排序
? BestF = fitness(1);
? WorstF = fitness(end);
? for j = 1:pop
? ? ?X(j,:) = X(index(j),:);
? end
? curve(i) = GBestF;
end
Best_pos =GBestX;
Best_score = curve(end);
end
3 仿真結(jié)果


4 參考文獻(xiàn)
[1]馬晨佩, 李明輝, 鞏強(qiáng)令,等. 基于麻雀搜索算法優(yōu)化支持向量機(jī)的滾動(dòng)軸承故障診斷[J]. 科學(xué)技術(shù)與工程, 2021, 21(10):5.
博主簡介:擅長智能優(yōu)化算法、神經(jīng)網(wǎng)絡(luò)預(yù)測、信號(hào)處理、元胞自動(dòng)機(jī)、圖像處理、路徑規(guī)劃、無人機(jī)等多種領(lǐng)域的Matlab仿真,相關(guān)matlab代碼問題可私信交流。
部分理論引用網(wǎng)絡(luò)文獻(xiàn),若有侵權(quán)聯(lián)系博主刪除。
