最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

階乘的進(jìn)步一延拓——Gamma函數(shù)幾個公式

2021-12-25 13:17 作者:子瞻Louis  | 我要投稿

上一期:實數(shù)的階乘——歐拉積分中介紹了歐拉兩類積分,

本期主要討論歐拉第二類積分,即Gamma函數(shù)

%5CGamma(s)%3D%5Cint_0%5E%5Cinfty%20x%5E%7Bs-1%7De%5E%7B-x%7D%5Cmathrm%20dx

歐拉-馬歇羅尼常數(shù)

這個十分重要的常數(shù)是在調(diào)和級數(shù)中產(chǎn)生的,我們都知道

%5Cint_1%5Em%5Cfrac1x%5Cmathrm%20dx%3D%5Cln%20m

將積分區(qū)間切開,寫成以下形式:

%5Csum_%7Bn%3D1%7D%5E%7Bm-1%7D%5Cint_%7Bn%7D%5E%7Bn%2B1%7D%5Cfrac1x%5Cmathrm%20dx%3D%5Cln%20m

因為%5Cfrac1x在正半軸上單調(diào)遞減,根據(jù)積分中值定理

%5Cfrac1%7Bn%2B1%7D%EF%BC%9C%5Cint_%7Bn%7D%5E%7Bn%2B1%7D%5Cfrac1x%5Cmathrm%20dx%EF%BC%9C%5Cfrac1n

%5Csum_%7Bn%3D2%7D%5Em%5Cfrac1%7Bn%7D%EF%BC%9C%5Csum_%7Bn%3D1%7D%5E%7Bm-1%7D%5Cint_%7Bn%7D%5E%7Bn%2B1%7D%5Cfrac1x%5Cmathrm%20dx%3D%5Cln%20m%EF%BC%9C%5Csum_%7Bn%3D1%7D%5E%7Bm-1%7D%5Cfrac1%7Bn%7D

m%5Crightarrow%20%5Cinfty,得到

%5Clim_%7Bm%5Cto%5Cinfty%7D%5Ccolor%7Bblue%7D%7B%5Csum_%7Bn%3D1%7D%5Em%5Cfrac1%7Bn%7D%7D-1%EF%BC%9C%5Csum_%7Bn%3D1%7D%5E%7Bm-1%7D%5Cint_%7Bn%7D%5E%7Bn%2B1%7D%5Cfrac1x%5Cmathrm%20dx%3D%5Ccolor%7Bblue%7D%7B%5Cln%20m%7D%EF%BC%9C%5Ccolor%7Bblue%7D%7B%5Csum_%7Bn%3D1%7D%5E%7Bm%7D%5Cfrac1%7Bn%7D%7D-%5Cfrac1m

%5CRightarrow%20%5Clim_%7Bm%5Cto%5Cinfty%7D%5Cfrac1m%EF%BC%9C%5Ccolor%7Bpurple%7D%7B%5Csum_%7Bn%3D1%7D%5Em%5Cfrac1n-%5Cln%20m%7D%EF%BC%9C1

即它倆極限的差收斂到一個0到1之間的常數(shù),此外還可以由此輕松得到調(diào)和級數(shù)成對數(shù)狀發(fā)散,而這個常數(shù)就是歐拉-馬歇羅尼常數(shù)(Euler—Mascheroni constant,有時也叫歐拉常數(shù),記為

%5Cgamma%3D%5Clim_%7BN%5Cto%5Cinfty%7D%5Csum_%7Bn%3D1%7D%5EN%5Cfrac1n-%5Cln%20N

由于它是在極限中產(chǎn)生的常數(shù),所以它的超越性是尚不好確定的,并且事實上這個常數(shù)的無理性的證明都是十分棘手的,但我們可以通過一下方法計算它的近似值,令

%5Cgamma_n%3D1%2B%5Cfrac12%2B%E2%80%A6%2B%5Cfrac1n-%5Cln%20n

則它的極限就是Euler常數(shù)

%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cgamma_n%3D%5Cgamma

由此可以計算該常數(shù)約為

%CE%B3%E2%89%880.577215%E2%80%A6

復(fù)平面上的解析延拓

我們先前規(guī)定了在Gamma函數(shù)的積分中s為一大于零的實數(shù),因為這樣右邊的積分才收斂

如果我們把s換成一個復(fù)數(shù),那么該積分在%5CRe(s)%EF%BC%9E0的平面上是收斂的,但是這并不能讓我們滿足,不妨試著將Gamma函數(shù)延拓到整個復(fù)平面,

對此,我們希望它在復(fù)平面上滿足以下條件:

  • %5CGamma(1)

  • %5CGamma(s%2B1)%3Ds%5CGamma(s)

對于第二個遞推條件,取s=0,得到

%5CGamma(1)%3D0%5Ccdot%5CGamma(0)

發(fā)現(xiàn)它在s=0處出現(xiàn)了極點,再根據(jù)該遞推公式,可知0%2C-1%2C-2%2C%E2%80%A6都是它的極點,這可不是好事,但是又注意到滿足上述兩個條件的%5CGamma(s)在復(fù)平面上是沒有零點的,那我們就可以取它的倒數(shù)了,這樣一來%5Cfrac1%7B%5CGamma(s)%7D就是復(fù)平面上的全純函數(shù)了,并且0%2C-1%2C-2%2C%E2%80%A6是它的零點,而這個序列是趨向無窮的,又有

%5Cvert%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac1%7B-n%7D%5Cvert%3D%5Cinfty%2C%E8%80%8C%5Cvert%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac1%7B(-n)%5E2%7D%5Cvert%EF%BC%9C%5Cinfty

剛好這些條件滿足Weierstrass分解定理,因此它可以展開為以下乘積:

%5Cfrac1%7B%5CGamma(s)%7D%3De%5E%7BH(s)%7Ds%5Cprod_%7Bn%3D1%7D%5E%5Cinfty%5Cleft(1%2B%5Cfrac%20sn%5Cright)e%5E%7B-s%2Fn%7D

對它取對數(shù),得到

%5Cbegin%7Baligned%7D%5Cln%5CGamma(s)%26%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%20sn-%7BH(s)%7D-%5Cln%20s-%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cln%5Cleft(%5Cfrac%20%7Bs%2Bn%7Dn%5Cright)%5C%5C%26%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%20sn-%7BH(s)%7D-%5Cln%20s-%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cln%5Cleft(s%2Bn%5Cright)%2B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cln%20n%5Cend%7Baligned%7D

又根據(jù)Gauss公式,可得:

%5CGamma(s)%3D%5Clim_%7BN%5Cto%5Cinfty%7D%5Cfrac%7BN%5Es%5Ccdot%20N!%7D%7Bs(s%2B1)%E2%80%A6(s%2BN)%7D

%5CRightarrow%20%5Cln%5CGamma(s)%3D%5Clim_%7BN%5Cto%5Cinfty%7Ds%5Cln%20N%2B%5Csum_%7Bn%3D1%7D%5E%7BN%7D%5Cln%20n-%5Csum_%7Bn%3D0%7D%5E%7BN%7D%5Cln(s%2Bn)

代入到上式中,可得

%5Clim_%7BN%5Cto%5Cinfty%7Ds%5Cln%20N%2B%5Csum_%7Bn%3D1%7D%5E%7BN%7D%5Cln%20n-%5Csum_%7Bn%3D0%7D%5E%7BN%7D%5Cln(s%2Bn)%3D%5Csum_%7Bn%3D1%7D%5E%7BN%7D%5Cfrac%20sn-%7BH(s)%7D-%5Cln%20s-%5Csum_%7Bn%3D1%7D%5E%7BN%7D%5Cln%5Cleft(s%2Bn%5Cright)%2B%5Csum_%7Bn%3D1%7D%5E%7BN%7D%5Cln%20n

%5CRightarrow%20H(s)%3D%5Clim_%7BN%5Cto%5Cinfty%7D%5Csum_%7Bn%3D1%7D%5EN%5Cfrac%20sn-s%5Cln%20N%3D%5Cgamma%20s

于是就得到了Gamma函數(shù)的Weierstrass公式

  • %5Cfrac1%7B%5CGamma(s)%7D%3De%5E%7B%5Cgamma%20s%7Ds%5Cprod_%7Bn%3D1%7D%5E%5Cinfty%5Cleft(1%2B%5Cfrac%20sn%5Cright)e%5E%7B-s%2Fn%7D

至此就完成了Gamma函數(shù)在復(fù)平面上的解析延拓

對上面的公式作變換

%5Cbegin%7Baligned%7D%5Cfrac1%7B%5CGamma(s)%7D%26%3D%5Clim_%7BN%5Cto%5Cinfty%7De%5E%7B%5Csum_%7Bn%3D1%7D%5EN%5Cfrac%20sn-s%5Cln%20N%7Ds%5Cprod_%7Bn%3D1%7D%5EN%5Cleft(1%2B%5Cfrac%20sn%5Cright)e%5E%7B-s%2Fn%7D%5C%5C%26%3D%5Clim_%7BN%5Cto%5Cinfty%7D%5Cfrac%20s%7BN%5Es%7D%5Cprod_%7Bn%3D1%7D%5EN%5Cleft(1%2B%5Cfrac%20sn%5Cright)e%5E%7B-s%2Fn%2Bs%2Fn%7D%5C%5C%26%3D%5Clim_%7BN%5Cto%5Cinfty%7D%5Cfrac%20s%7BN%5Es%7D%5Cprod_%7Bn%3D1%7D%5EN%5Cleft(%5Cfrac%20%7Bs%2Bn%7Dn%5Cright)%5Cend%7Baligned%7D

取倒數(shù)就又可以得到Gauss公式了,并且它還了告訴我們該乘積公式在復(fù)平面上除了0%2C-1%2C-2%2C%E2%80%A6外都收斂到解析函數(shù)

又有:

%5Cprod_%7Bn%3D1%7D%5E%7BN-1%7D%5Cleft(1%2B%5Cfrac1n%5Cright)%3D%5Cprod_%7Bn%3D1%7D%5E%7BN-1%7D%5Cleft(%5Cfrac%7Bn%2B1%7Dn%5Cright)%3D%5Cfrac21%5Ccdot%5Cfrac32%5Ccdot%5Cfrac43%E2%80%A6%5Cfrac%7BN-1%7D%7BN-2%7D%5Ccdot%5Cfrac%20N%7Bn-1%7D%3DN

%5CRightarrow%5Cfrac1%7BN%5Es%7D%3D%5Cprod_%7Bn%3D1%7D%5E%7BN-1%7D%5Cleft(1%2B%5Cfrac1n%5Cright)%5E%7B-s%7D%3D%5Cprod_%7Bn%3D1%7D%5E%7BN%7D%5Cleft(1%2B%5Cfrac1n%5Cright)%5E%7B-s%7D%5Ccdot%5Ccolor%7Bgray%7D%7B%5Cfrac1%7B%5Cleft(1%2B%5Cfrac1N%5Cright)%5Es%7D%7D

由此便可得

  • %5Cfrac1%7B%5CGamma(s)%7D%3Ds%5Cprod_%7Bn%3D1%7D%5E%5Cinfty%5Cleft(1%2B%5Cfrac%20%7Bs%7Dn%5Cright)%5Cleft(1%2B%5Cfrac1n%5Cright)%5E%7B-s%7D

余元和倍元公式

余元公式

根據(jù)上面第二個公式,有

%5Cbegin%7Baligned%7D%5Cfrac1%7B%5CGamma(s)%5CGamma(-s)%7D%26%3D-s%5Ccdot%20s%5Cprod_%7Bn%3D1%7D%5E%5Cinfty%5Cleft(1%2B%5Cfrac%20%7Bs%7Dn%5Cright)%5Cleft(1-%5Cfrac%20%7Bs%7Dn%5Cright)%5Cleft(1%2B%5Cfrac1n%5Cright)%5E%7B-s%2Bs%7D%5C%5C%26%3D-s%5Ccdot%20s%5Ccolor%7Bblue%7D%7B%5Cprod_%7Bn%3D1%7D%5E%5Cinfty%5Cleft(1-%5Cfrac%7Bs%5E2%7D%7Bn%5E2%7D%5Cright)%7D%5Cend%7Baligned%7D????

觀察發(fā)現(xiàn)藍(lán)色部分就是我們前幾期推導(dǎo)過的%5Cfrac%7B%5Csin%20%5Cpi%20s%7D%7B%5Cpi%20s%7D的無窮乘積展開,因此

%5Cfrac1%7B%5CGamma(s)%5CGamma(-s)%7D%3D-s%5Ccdot%5Cfrac%7B%5Csin%20%5Cpi%20s%7D%7B%5Cpi%20%7D

%5CRightarrow%5Cfrac1%7B%5CGamma(s)%5Ccdot%5Ccolor%7Bpurple%7D%7B-s%5CGamma(-s)%7D%7D%3D%5Cfrac%7B%5Csin%20%5Cpi%20s%7D%5Cpi

最后根據(jù)遞推公式,可得

%5CGamma(s)%5CGamma(1-s)%3D%5Cfrac%5Cpi%7B%5Csin%20%5Cpi%20s%7D

這就是Gamma函數(shù)的余元公式了,代入s%3D%5Cfrac12,可得

%5CGamma%5Cleft(%5Cfrac12%5Cright)%3D%5Csqrt%5Cpi

又根據(jù)它的積分表式,可得Euler-Poisson積分

%5Cint_%5Cmathbb%20Re%5E%7B-x%5E2%7D%5Cmathrm%20%20dx%3D%5Csqrt%5Cpi

倍元公式

(溫馨提示:下面的推理可能會"吵"到您的眼睛)

根據(jù)Gauss公式,有

%5Cbegin%7Baligned%7D%5CGamma(s)%5CGamma%5Cleft(s%2B%5Cfrac12%5Cright)%26%3D%5Clim_%7BN%5Cto%5Cinfty%7D%5Cfrac%7BN%5E%7B2s%2B%5Cfrac12%7D%5Ccdot%20N!%5E2%7D%7Bs(s%2B%5Cfrac12)(s%2B1)%E2%80%A6(s%2BN)(s%2BN%2B%5Cfrac12)%7D%5C%5C%26%3D%5Clim_%7BN%5Cto%5Cinfty%7D%5Cfrac%7BN%5E%7B2s%2B%5Cfrac12%7D%5Ccdot2%5E%7B2N%2B2%7D%5Ccdot%20N!%5E2%7D%7B2s(2s%2B1)%E2%80%A6(2s%2B2N)(2s%2B2N%2B1)%7D%5C%5C%26%3D%5Clim_%7BN%5Cto%5Cinfty%7D%5Ccolor%7Bred%7D%7B%5Cfrac%7BN%5E%5Cfrac12%5Ccdot%202%5E%7B2N%2B1%7D%5Ccdot%20N!%5E2%7D%7B(2N%2B1)!%7D%7D%5Ccolor%7Bgreen%7D%7B%5Cfrac%7B2%5E%7B-2s%2B1%7D(2N)%5E%7B2s%7D%5Ccdot%20(2N)!(2N%2B1)%7D%7B2s(2s%2B1)%E2%80%A6(2s%2B2N)(2s%2B2N%2B1)%7D%7D%5Cend%7Baligned%7D

拎出紅色部分

%5Cbegin%7Baligned%7D%5Clim_%7BN%5Cto%5Cinfty%7D%5Cfrac%7BN%5E%5Cfrac12%5Ccdot2%5E%7B2N%2B1%7D%5Ccdot%20N!%5E2%7D%7B(2N%2B1)!%7D%26%3D%5Clim_%7BN%5Cto%5Cinfty%7D%5Cfrac%7BN%5E%5Cfrac12%5Ccdot2%5E%7B2N%2B1%7D%5Ccdot%20N!%5Ccdot1%5Ccdot2%E2%80%A6N%7D%7B1%5Ccdot3%E2%80%A6(2N%2B1)%5Ccdot2%5Ccdot4%E2%80%A6(2N)%7D%5C%5C%26%3D%5Clim_%7BN%5Cto%5Cinfty%7D%5Cfrac%7BN%5E%5Cfrac12%5Ccdot%20N!%5Ccdot1%5Ccdot2%E2%80%A6N%7D%7B%5Cfrac12%5Ccdot(%5Cfrac12%2B1)%E2%80%A6(%5Cfrac12%2BN)%5Ccdot1%5Ccdot2%E2%80%A6N%7D%5C%5C%26%3D%5CGamma%5Cleft(%5Cfrac12%5Cright)%3D%5Csqrt%5Cpi%5Cend%7Baligned%7D

再把綠色部分拎出來,

%5Cbegin%7Baligned%7D%5Clim_%7BN%5Cto%5Cinfty%7D%5Cfrac%7B2%5E%7B-2s%2B1%7D(2N)%5E%7B2s%7D%5Ccdot%20(2N)!(2N%2B1)%7D%7B2s(2s%2B1)%E2%80%A6(2s%2B2N)(2s%2B2N%2B1)%7D%26%3D%5Cfrac1%7B2%5E%7B2s-1%7D%7D%5CGamma(2s)%5Clim_%7BN%5Cto%5Cinfty%7D%5Cfrac%7B(2N%2B1)%7D%7B(2s%2B2N%2B1)%7D%5C%5C%26%3D%5Cfrac1%7B2%5E%7B2s-1%7D%7D%5CGamma(2s)%5Cend%7Baligned%7D

代回上式中,即可得

%5CGamma(s)%5CGamma%5Cleft(s%2B%5Cfrac12%5Cright)%3D%5Cfrac1%7B2%5E%7B2s-1%7D%7D%5CGamma%5Cleft(%5Cfrac12%5Cright)%5CGamma(2s)

或者

B%5Cleft(s%2Cs%2B%5Cfrac12%5Cright)%3D%5Cfrac1%7B2%5E%7B2s-1%7D%7DB%5Cleft(%5Cfrac12%2C2s%5Cright)

一個積分

最后本期專欄就以一個積分來收尾吧

I%3D%5Cint_0%5E%5Cinfty%5Cfrac%7B%5Csqrt%20x%7D%7B1%2Bx%5E2%7D%5Cmathrm%20dx

其中的根號看起來十分不友好,那我們不妨設(shè)

%5CPhi%20(%5Calpha%2C%5Cbeta)%3D%5Cint_0%5E%5Cinfty%5Cfrac%7Bx%5E%7B%5Calpha-1%7D%7D%7B1%2Bx%5E%5Cbeta%7D%5Cmathrm%20dx

看到這個東西,就不難聯(lián)想到beta函數(shù)了,作代換u%3Dx%5E%5Cbeta,

%5Cbegin%7Baligned%7D%5CPhi(%5Calpha%2C%5Cbeta)%26%3D%5Cint_0%5E%5Cinfty%5Cfrac%7Bu%5E%5Cfrac%7B%5Calpha-1%7D%7B%5Cbeta%7D%7D%7B1%2Bu%7D%5Cmathrm%20du%5E%7B1%2F%5Cbeta%7D%5C%5C%26%3D%5Cfrac1%5Cbeta%5Cint_0%5E%5Cinfty%5Cfrac%7Bu%5E%7B%5Calpha%2F%5Cbeta-1%7D%7D%7B1%2Bu%7D%5Cmathrm%20du%5C%5C%26%3D%5Cfrac1%5Cbeta%20B%5Cleft(%5Cfrac%7B%5Calpha%7D%7B%5Cbeta%7D%2C1-%5Cfrac%7B%5Calpha%7D%7B%5Cbeta%7D%5Cright)%5C%5C%26%3D%5Cfrac1%5Cbeta%5CGamma%5Cleft(%5Cfrac%7B%5Calpha%7D%7B%5Cbeta%7D%5Cright)%5CGamma%5Cleft(1-%5Cfrac%7B%5Calpha%7D%5Cbeta%5Cright)%5Cend%7Baligned%7D

再根據(jù)余元公式,可得

%5CPhi(%5Calpha%2C%5Cbeta)%3D%5Cfrac%7B%5Cpi%7D%7B%5Cbeta%5Csin%5Cfrac%7B%5Calpha%7D%5Cbeta%5Cpi%7D

所以就能得到上面的積分了:

%5Cbegin%7Baligned%7DI%3D%5CPhi%5Cleft(%5Cfrac32%2C2%5Cright)%26%3D%5Cfrac%7B%5Cpi%7D%7B2%5Csin%5Cfrac34%5Cpi%7D%5C%5C%26%3D%5Cfrac%7B%5Cpi%7D%7B%5Csqrt2%7D%3D%5Cfrac%7B%5Csqrt2%7D2%5Cpi%5Cend%7Baligned%7D?

此外還可以得到

%5Cint_0%5E%5Cinfty%5Cfrac%7B%5Cmathrm%20dx%7D%7B1%2Bx%5Ea%7D%3D%5CPhi(1%2Ca)%3D%5Cfrac%7B%5Cpi%7D%7Ba%5Csin%5Cfrac1a%5Cpi%7D

根據(jù)它們就來可以整一些奇怪的積分了,比如

%5Cint_0%5E%5Cinfty%5Cfrac%7B%5Cmathrm%20dx%7D%7B1%2Bx%5E%5Cpi%7D%3D%5Cfrac1%7B%5Csin1%7D

%5Cint_0%5E%5Cinfty%5Cfrac%7Bx%5E%7Be-1%7D%7D%7B1%2Bx%5E%5Cgamma%7D%5Cmathrm%20dx%3D%5Cfrac%7B%5Cpi%7D%7B%5Cgamma%5Csin%5Cfrac%7Be%5Cpi%7D%7B%5Cgamma%7D%7D

Lernhard?Euler


階乘的進(jìn)步一延拓——Gamma函數(shù)幾個公式的評論 (共 條)

分享到微博請遵守國家法律
吴旗县| 招远市| 沐川县| 区。| 崇信县| 右玉县| 都兰县| 平乐县| 理塘县| 泽州县| 共和县| 兴山县| 永胜县| 龙口市| 民权县| 收藏| 延川县| 台东市| 福安市| 三门县| 卓尼县| 保靖县| 定兴县| 惠来县| 新丰县| 烟台市| 化德县| 巢湖市| 平塘县| 广水市| 伊吾县| 长沙县| 米易县| 大关县| 甘孜县| 黄平县| 贵定县| 上蔡县| 呼和浩特市| 上饶县| 吉首市|