長方形長22cm寬18cm,沿著 BC折疊,頂點與長交與點E ,求綠色面積
2023-02-26 10:03 作者:虛擬子彈數(shù)學課堂 | 我要投稿
題目:
如圖,一個長方形長為22cm,寬為18cm,將一個直角沿著 BC 折疊,直角頂點與長交與點 E ,求綠色陰影面積是多少。
粉絲解法1:
AE=√(22^2-18^2)=4√10,
DE=22-4√10,
設(shè)CE=a,CD=18-a,
a2=(18-a)2+(22-4√10)2,
a=(242-44√10)/9,
s綠=22x18-2x1/2x22×(242-44√10)/9=(968√10-1760)/9。
粉絲解法2:
BE=22,AB=18,AE=4√10,S▲ABE=36√10,
DE=22-4√10,α+β=90°,
▲ABE∽▲DEC,
DE:AB=(11-2√10):9,
S▲CDE=(644√10-1760)/9,
S綠=(968√10-1760)/9。
粉絲解法3:
粉絲解法4:
解:設(shè)右下頂點為A,
由折疊圖形得:
AB=18cm,BE=AD=22cm,
所以AE=?(222-182)=4?10cm,
ED=22-4?10cm。
設(shè)CD=x,則CE=18-x ,
有x2+(22-4?10)2=(18-x)2,
解得x=44?10/9-80/9,
所以綠色陰影面積 =4?10*18÷2+(44?10/9-80/9)*(22-4?10)÷2=644?10/9-1760/9 cm2
標簽: