ECCV22 最新54篇論文分方向整理|包含目標(biāo)檢測、圖像分割、監(jiān)督學(xué)習(xí)等(附下載)
本文首發(fā)極市平臺(tái)公眾號(hào),轉(zhuǎn)載請獲得授權(quán)并標(biāo)明出處。
ECCV 2022 論文分方向整理目前在極市社區(qū)持續(xù)更新中,已累計(jì)更新了54篇,項(xiàng)目地址:https://github.com/extreme-assistant/ECCV2022-Paper-Code-Interpretation以下是本周更新的 ECCV 2022 論文,包含檢測,分割,圖像處理,視頻理解,神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計(jì),無監(jiān)督學(xué)習(xí),遷移學(xué)習(xí)等方向。
打包下載下載地址:https://www.cvmart.net/community/detail/6592
-?檢測??
-?分割??
-?圖像處理??
-?視頻處理??
-?圖像、視頻檢索與理解????
-?估計(jì)
-?目標(biāo)跟蹤??
-?文本檢測與識(shí)別????
-?GAN/生成式/對抗式??
-?神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計(jì)????
-?數(shù)據(jù)處理???
-?模型訓(xùn)練/泛化????
-?模型壓縮??
-?模型評估??
-?半監(jiān)督學(xué)習(xí)/自監(jiān)督學(xué)習(xí)??
-?多模態(tài)/跨模態(tài)學(xué)習(xí)??
-?小樣本學(xué)習(xí)???
-?強(qiáng)化學(xué)習(xí)
檢測
2D目標(biāo)檢測
[1] Point-to-Box Network for Accurate Object Detection via Single Point Supervision (通過單點(diǎn)監(jiān)督實(shí)現(xiàn)精確目標(biāo)檢測的點(diǎn)對盒網(wǎng)絡(luò))
paper:https://arxiv.org/abs/2207.06827
code:https://github.com/ucas-vg/p2bnet
[2] You Should Look at All Objects (您應(yīng)該查看所有物體)
paper:https://arxiv.org/abs/2207.07889
code:https://github.com/charlespikachu/yslao[3] Adversarially-Aware Robust Object Detector (對抗性感知魯棒目標(biāo)檢測器)
paper:https://arxiv.org/abs/2207.06202
code:https://github.com/7eu7d7/robustdet
3D目標(biāo)檢測
[1] Rethinking IoU-based Optimization for Single-stage 3D Object Detection (重新思考基于 IoU 的單階段 3D 對象檢測優(yōu)化)
paper:https://arxiv.org/abs/2207.09332
人物交互檢測
[1] Towards Hard-Positive Query Mining for DETR-based Human-Object Interaction Detection (面向基于 DETR 的人機(jī)交互檢測的硬性查詢挖掘)
paper:https://arxiv.org/abs/2207.05293 ?
code:https://github.com/muchhair/hqm
圖像異常檢測
[1] DICE: Leveraging Sparsification for Out-of-Distribution Detection (DICE:利用稀疏化進(jìn)行分布外檢測)
paper:https://arxiv.org/abs/2111.09805
code:https://github.com/deeplearning-wisc/dice
分割
實(shí)例分割
[1] Box-supervised Instance Segmentation with Level Set Evolution (具有水平集進(jìn)化的框監(jiān)督實(shí)例分割)
paper:https://arxiv.org/abs/2207.09055[2] OSFormer: One-Stage Camouflaged Instance Segmentation with Transformers (OSFormer:使用 Transformers 進(jìn)行單階段偽裝實(shí)例分割)
paper:https://arxiv.org/abs/2207.02255 ?
code:https://github.com/pjlallen/osformer
語義分割
[1] 2DPASS: 2D Priors Assisted Semantic Segmentation on LiDAR Point Clouds (2DPASS:激光雷達(dá)點(diǎn)云上的二維先驗(yàn)輔助語義分割)
paper:https://arxiv.org/abs/2207.04397 ?
code:https://github.com/yanx27/2dpass
視頻目標(biāo)分割
[1] Learning Quality-aware Dynamic Memory for Video Object Segmentation (視頻對象分割的學(xué)習(xí)質(zhì)量感知?jiǎng)討B(tài)內(nèi)存)
paper:https://arxiv.org/abs/2207.07922
code:https://github.com/workforai/qdmn
圖像處理
超分辨率
[1] Dynamic Dual Trainable Bounds for Ultra-low Precision Super-Resolution Networks (超低精度超分辨率網(wǎng)絡(luò)的動(dòng)態(tài)雙可訓(xùn)練邊界)
paper:https://arxiv.org/abs/2203.03844 ?
code:https://github.com/zysxmu/ddtb
圖像去噪
[1] Deep Semantic Statistics Matching (D2SM) Denoising Network (深度語義統(tǒng)計(jì)匹配(D2SM)去噪網(wǎng)絡(luò))
paper:https://arxiv.org/abs/2207.09302
圖像復(fù)原/圖像增強(qiáng)/圖像重建
[1] Semantic-Sparse Colorization Network for Deep Exemplar-based Colorization (用于基于深度示例的著色的語義稀疏著色網(wǎng)絡(luò))
paper:https://arxiv.org/abs/2112.01335
[2] Geometry-aware Single-image Full-body Human Relighting (幾何感知單圖像全身人體重新照明)
paper:https://arxiv.org/abs/2207.04750
[3] Multi-Modal Masked Pre-Training for Monocular Panoramic Depth Completion (單目全景深度補(bǔ)全的多模態(tài)蒙面預(yù)訓(xùn)練)
paper:https://arxiv.org/abs/2203.09855[4] PanoFormer: Panorama Transformer for Indoor 360 Depth Estimation (PanoFormer:用于室內(nèi) 360 深度估計(jì)的全景變壓器)
paper:https://arxiv.org/abs/2203.09283[5] SESS: Saliency Enhancing with Scaling and Sliding (SESS:通過縮放和滑動(dòng)增強(qiáng)顯著性)
paper:https://arxiv.org/abs/2207.01769[6] RigNet: Repetitive Image Guided Network for Depth Completion (RigNet:用于深度補(bǔ)全的重復(fù)圖像引導(dǎo)網(wǎng)絡(luò))
paper:https://arxiv.org/abs/2107.13802

圖像外推(Image Outpainting)
[1] Outpainting by Queries (通過查詢進(jìn)行外包)
paper:https://arxiv.org/abs/2207.05312 ?
code:https://github.com/kaiseem/queryotr

風(fēng)格遷移(Style Transfer)
[1] CCPL: Contrastive Coherence Preserving Loss for Versatile Style Transfer (CCPL:通用風(fēng)格遷移的對比相干性保留損失)
paper:https://arxiv.org/abs/2207.04808 ?
code:https://github.com/JarrentWu1031/CCPL
視頻處理(Video Processing)
[1] Improving the Perceptual Quality of 2D Animation Interpolation (提高二維動(dòng)畫插值的感知質(zhì)量)
paper:https://arxiv.org/abs/2111.12792
code:https://github.com/shuhongchen/eisai-anime-interpolator
[2] Real-Time Intermediate Flow Estimation for Video Frame Interpolation (視頻幀插值的實(shí)時(shí)中間流估計(jì))
paper:https://arxiv.org/abs/2011.06294 ?
code:https://github.com/MegEngine/arXiv2020-RIFE
圖像、視頻檢索與理解
動(dòng)作識(shí)別
[1] ReAct: Temporal Action Detection with Relational Queries (ReAct:使用關(guān)系查詢的時(shí)間動(dòng)作檢測)
paper:https://arxiv.org/abs/2207.07097
code:https://github.com/sssste/react[2] Hunting Group Clues with Transformers for Social Group Activity Recognition (用Transformers尋找群體線索用于社會(huì)群體活動(dòng)識(shí)別)
paper:https://arxiv.org/abs/2207.05254
視頻理解
[1] GraphVid: It Only Takes a Few Nodes to Understand a Video (GraphVid:只需幾個(gè)節(jié)點(diǎn)即可理解視頻)
paper:https://arxiv.org/abs/2207.01375[2] Deep Hash Distillation for Image Retrieval (用于圖像檢索的深度哈希蒸餾)
paper:https://arxiv.org/abs/2112.08816
code:https://github.com/youngkyunjang/deep-hash-distillation

視頻檢索(Video Retrieval)
[1] TS2-Net: Token Shift and Selection Transformer for Text-Video Retrieval (TS2-Net:用于文本視頻檢索的令牌移位和選擇轉(zhuǎn)換器)
paper:https://arxiv.org/abs/2207.07852
code:https://github.com/yuqi657/ts2_net

[2] Lightweight Attentional Feature Fusion: A New Baseline for Text-to-Video Retrieval (輕量級注意力特征融合:文本到視頻檢索的新基線)
paper:https://arxiv.org/abs/2112.01832
估計(jì)
位姿估計(jì)
[1] Category-Level 6D Object Pose and Size Estimation using Self-Supervised Deep Prior Deformation Networks (使用自監(jiān)督深度先驗(yàn)變形網(wǎng)絡(luò)的類別級 6D 對象姿勢和大小估計(jì))
paper:https://arxiv.org/abs/2207.05444 ?
code:https://github.com/jiehonglin/self-dpdn

深度估計(jì)
[1] Physical Attack on Monocular Depth Estimation with Optimal Adversarial Patches (使用最優(yōu)對抗補(bǔ)丁對單目深度估計(jì)進(jìn)行物理攻擊)
paper:https://arxiv.org/abs/2207.04718
目標(biāo)跟蹤
[1] Towards Grand Unification of Object Tracking (邁向目標(biāo)跟蹤的大統(tǒng)一)
paper:https://arxiv.org/abs/2207.07078
code:https://github.com/masterbin-iiau/unicorn

文本檢測與識(shí)別
[1] Dynamic Low-Resolution Distillation for Cost-Efficient End-to-End Text Spotting (用于經(jīng)濟(jì)高效的端到端文本識(shí)別的動(dòng)態(tài)低分辨率蒸餾)
paper:https://arxiv.org/abs/2207.06694
code:https://github.com/hikopensource/davar-lab-ocr
GAN/生成式/對抗式
[1] Eliminating Gradient Conflict in Reference-based Line-Art Colorization (消除基于參考的藝術(shù)線條著色中的梯度沖突)
paper:https://arxiv.org/abs/2207.06095
code:https://github.com/kunkun0w0/sga

[2] WaveGAN: Frequency-aware GAN for High-Fidelity Few-shot Image Generation (WaveGAN:用于高保真少鏡頭圖像生成的頻率感知 GAN)
paper:https://arxiv.org/abs/2207.07288
code:https://github.com/kobeshegu/ecCV2022_wavegan[3] FakeCLR: Exploring Contrastive Learning for Solving Latent Discontinuity in Data-Efficient GANs (FakeCLR:探索對比學(xué)習(xí)以解決數(shù)據(jù)高效 GAN 中的潛在不連續(xù)性)
paper:https://arxiv.org/abs/2207.08630
code:https://github.com/iceli1007/fakeclr

[4] UniCR: Universally Approximated Certified Robustness via Randomized Smoothing (UniCR:通過隨機(jī)平滑獲得普遍近似的認(rèn)證魯棒性)
paper:https://arxiv.org/abs/2207.02152
神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計(jì)
神經(jīng)網(wǎng)絡(luò)架構(gòu)搜索(NAS)
[1] ScaleNet: Searching for the Model to Scale (ScaleNet:搜索要擴(kuò)展的模型)
paper:https://arxiv.org/abs/2207.07267
code:https://github.com/luminolx/scalenet

[2] Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning (集成知識(shí)引導(dǎo)的子網(wǎng)絡(luò)搜索和過濾器修剪微調(diào))
paper:https://arxiv.org/abs/2203.02651 ?
code:https://github.com/sseung0703/ekg[3] EAGAN: Efficient Two-stage Evolutionary Architecture Search for GANs (EAGAN:GAN 的高效兩階段進(jìn)化架構(gòu)搜索)
paper:https://arxiv.org/abs/2111.15097 ?
code:https://github.com/marsggbo/EAGAN
數(shù)據(jù)處理
歸一化
[1] Fine-grained Data Distribution Alignment for Post-Training Quantization (訓(xùn)練后量化的細(xì)粒度數(shù)據(jù)分布對齊)
paper:https://arxiv.org/abs/2109.04186 ?
code:https://github.com/zysxmu/fdda
模型訓(xùn)練/泛化
噪聲標(biāo)簽
[1] Learning with Noisy Labels by Efficient Transition Matrix Estimation to Combat Label Miscorrection (通過有效的轉(zhuǎn)移矩陣估計(jì)學(xué)習(xí)噪聲標(biāo)簽以對抗標(biāo)簽錯(cuò)誤校正)
paper:https://arxiv.org/abs/2111.14932

模型壓縮
知識(shí)蒸餾
[1] Knowledge Condensation Distillation (知識(shí)濃縮蒸餾)
paper:https://arxiv.org/abs/2207.05409 ?
code:https://github.com/dzy3/kcd)
模型評估
[1] Hierarchical Latent Structure for Multi-Modal Vehicle Trajectory Forecasting (多模式車輛軌跡預(yù)測的分層潛在結(jié)構(gòu))
paper:https://arxiv.org/abs/2207.04624 ?
code:https://github.com/d1024choi/hlstrajforecast
半監(jiān)督學(xué)習(xí)/無監(jiān)督學(xué)習(xí)/自監(jiān)督學(xué)習(xí)
[1] FedX: Unsupervised Federated Learning with Cross Knowledge Distillation (FedX:具有交叉知識(shí)蒸餾的無監(jiān)督聯(lián)合學(xué)習(xí))
paper:https://arxiv.org/abs/2207.09158

[2] Synergistic Self-supervised and Quantization Learning (協(xié)同自監(jiān)督和量化學(xué)習(xí))
paper:https://arxiv.org/abs/2207.05432 ?
code:https://github.com/megvii-research/ssql-ecCV2022)[3] Contrastive Deep Supervision (對比深度監(jiān)督)
paper:https://arxiv.org/abs/2207.05306 ?
code:https://github.com/archiplab-linfengzhang/contrastive-deep-supervision[4] Dense Teacher: Dense Pseudo-Labels for Semi-supervised Object Detection (稠密教師:用于半監(jiān)督目標(biāo)檢測的稠密偽標(biāo)簽)
paper:https://arxiv.org/abs/2207.02541

[5] Image Coding for Machines with Omnipotent Feature Learning (具有全能特征學(xué)習(xí)的機(jī)器的圖像編碼)
paper:https://arxiv.org/abs/2207.01932
多模態(tài)學(xué)習(xí)/跨模態(tài)
視覺-語言
[1] Contrastive Vision-Language Pre-training with Limited Resources (資源有限的對比視覺語言預(yù)訓(xùn)練)
paper:https://arxiv.org/abs/2112.09331
code:https://github.com/zerovl/zerovl
跨模態(tài)
[1] Cross-modal Prototype Driven Network for Radiology Report Generation (用于放射學(xué)報(bào)告生成的跨模式原型驅(qū)動(dòng)網(wǎng)絡(luò))
paper:https://arxiv.org/abs/ ?
code:https://github.com/markin-wang/xpronet

小樣本學(xué)習(xí)
[1] Learning Instance and Task-Aware Dynamic Kernels for Few Shot Learning (用于少數(shù)鏡頭學(xué)習(xí)的學(xué)習(xí)實(shí)例和任務(wù)感知?jiǎng)討B(tài)內(nèi)核)
paper:https://arxiv.org/abs/2112.03494

遷移學(xué)習(xí)/自適應(yīng)
[1] Factorizing Knowledge in Neural Networks (在神經(jīng)網(wǎng)絡(luò)中分解知識(shí))
paper:https://arxiv.org/abs/2207.03337 ?
code:https://github.com/adamdad/knowledgefactor[2] CycDA: Unsupervised Cycle Domain Adaptation from Image to Video (CycDA:從圖像到視頻的無監(jiān)督循環(huán)域自適應(yīng))
paper:https://arxiv.org/abs/2203.16244

強(qiáng)化學(xué)習(xí)
[1] Target-absent Human Attention (目標(biāo)缺失——人類注意力缺失)
paper:https://arxiv.org/abs/2207.01166 ?
code:https://github.com/neouyghur/sess