最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

鯤神預(yù)警!00后學(xué)霸再度來襲

2021-11-28 11:56 作者:老頑童崔坤  | 我要投稿

每一個大于或等于9的奇數(shù)Q都是3+兩個奇素數(shù)之和

????????????????????????????作者:崔坤

????????????????中國青島即墨??E-mail:cwkzq@126.com

摘要:根據(jù)2013年秘魯數(shù)學(xué)家哈羅德·賀歐夫格特已經(jīng)徹底地證明了三素數(shù)的定理:

每個大于等于9的奇數(shù)都是三個奇素數(shù)之和,每個奇素數(shù)都可以重復(fù)使用。

關(guān)鍵詞:三素數(shù)定理,奇素數(shù),加法交換結(jié)合律。

Every odd number greater than or equal to 9 is the sum of 3+ 2 odd primes

Abstract: according to the Peruvian mathematician Harold hoofgert, he has thoroughly proved three theorems of prime numbers Every odd number greater than or equal to 9 is the sum of three odd primes, and each odd prime can be reused.

Key words: three prime theorem, odd prime, additive commutative associative law.

證明:

根據(jù)秘魯數(shù)學(xué)家哈羅德·賀歐夫格特已經(jīng)徹底地證明了三素數(shù)的定理:

每個大于等于9的奇數(shù)都是三個奇素數(shù)之和,每一個奇素數(shù)都可以重復(fù)使用。

它用下列公式表示:

Q是每個≥9的奇數(shù),奇素數(shù):q1≥3,q2≥3,q3≥3,則Q=q1+q2+q3

根據(jù)加法交換結(jié)合定律,

不妨設(shè):q1≥q2≥q3≥3,則:

Q+3=q1+q2+q3+3

Q+3-q3=3+q1+q2

顯見,有且僅有q3=3時,等式左邊Q+3-q3=Q,

如此我們得到了一個新的推論:Q=3+q1+q2

左邊Q表示每個大于等于9的奇數(shù),右邊表示3+2個奇素數(shù)的和。

結(jié)論:每一個大于或等于9的奇數(shù)Q都是3+兩個奇素數(shù)之和.

由此得出:每個大于等于6的偶數(shù):Q-3=q1+q2都是兩個奇素數(shù)之和。

參考文獻(xiàn):

[1] Major Arcs for Goldbach's Theorem. Arxiv [Reference date 2013-12-18]

[2] Minor arcs for Goldbach's problem.Arxiv [Reference date 2013-12-18]


后記:

數(shù)學(xué)家劉建亞在《哥德巴赫猜想與潘承洞》中說:“我們可以把這個問題反過來思考,

已知奇數(shù)N可以表成三個素數(shù)之和,假如又能證明這三個素數(shù)中有一個非常小,譬如說第一個素數(shù)可以總?cè)?,那么我們也就證明了偶數(shù)的哥德巴赫猜想?!保@是1995年前的方法,主要受困于三素數(shù)定理沒有徹底證明。

直到2013年才有秘魯數(shù)學(xué)家哈羅德賀歐夫格特徹底證明了三素數(shù)定理。

本文正是在上述方法和定理下給出了三素數(shù)定理推論Q=3+q1+q2

【該方法簡稱最小三素數(shù)法】每一個大于或等于9的奇數(shù)Q都是3+兩個奇素數(shù)之和

????????????????????????????作者:崔坤

????????????????中國青島即墨??E-mail:cwkzq@126.com

摘要:根據(jù)2013年秘魯數(shù)學(xué)家哈羅德·賀歐夫格特已經(jīng)徹底地證明了三素數(shù)的定理:

每個大于等于9的奇數(shù)都是三個奇素數(shù)之和,每個奇素數(shù)都可以重復(fù)使用。

關(guān)鍵詞:三素數(shù)定理,奇素數(shù),加法交換結(jié)合律。

Every odd number greater than or equal to 9 is the sum of 3+ 2 odd primes

Abstract: according to the Peruvian mathematician Harold hoofgert, he has thoroughly proved three theorems of prime numbers Every odd number greater than or equal to 9 is the sum of three odd primes, and each odd prime can be reused.

Key words: three prime theorem, odd prime, additive commutative associative law.

證明:

根據(jù)秘魯數(shù)學(xué)家哈羅德·賀歐夫格特已經(jīng)徹底地證明了三素數(shù)的定理:

每個大于等于9的奇數(shù)都是三個奇素數(shù)之和,每一個奇素數(shù)都可以重復(fù)使用。

它用下列公式表示:

Q是每個≥9的奇數(shù),奇素數(shù):q1≥3,q2≥3,q3≥3,則Q=q1+q2+q3

根據(jù)加法交換結(jié)合定律,

不妨設(shè):q1≥q2≥q3≥3,則:

Q+3=q1+q2+q3+3

Q+3-q3=3+q1+q2

顯見,有且僅有q3=3時,等式左邊Q+3-q3=Q,

如此我們得到了一個新的推論:Q=3+q1+q2

左邊Q表示每個大于等于9的奇數(shù),右邊表示3+2個奇素數(shù)的和。

結(jié)論:每一個大于或等于9的奇數(shù)Q都是3+兩個奇素數(shù)之和.

由此得出:每個大于等于6的偶數(shù):Q-3=q1+q2都是兩個奇素數(shù)之和。

參考文獻(xiàn):

[1] Major Arcs for Goldbach's Theorem. Arxiv [Reference date 2013-12-18]

[2] Minor arcs for Goldbach's problem.Arxiv [Reference date 2013-12-18]


后記:

數(shù)學(xué)家劉建亞在《哥德巴赫猜想與潘承洞》中說:“我們可以把這個問題反過來思考,

已知奇數(shù)N可以表成三個素數(shù)之和,假如又能證明這三個素數(shù)中有一個非常小,譬如說第一個素數(shù)可以總?cè)?,那么我們也就證明了偶數(shù)的哥德巴赫猜想?!保@是1995年前的方法,主要受困于三素數(shù)定理沒有徹底證明。

直到2013年才有秘魯數(shù)學(xué)家哈羅德賀歐夫格特徹底證明了三素數(shù)定理。

本文正是在上述方法和定理下給出了三素數(shù)定理推論Q=3+q1+q2

【該方法簡稱最小三素數(shù)法】

鯤神預(yù)警!00后學(xué)霸再度來襲的評論 (共 條)

分享到微博請遵守國家法律
襄垣县| 天祝| 旬阳县| 铜梁县| 周宁县| 清原| 神农架林区| 施秉县| 嘉善县| 务川| 汉寿县| 集安市| 鱼台县| 花莲市| 南阳市| 双桥区| 连江县| 威宁| 荆州市| 渝中区| 巫山县| 招远市| 宁晋县| 汉川市| 南昌县| 乌苏市| 遂昌县| 黄平县| 山阳县| 北安市| 博爱县| 潍坊市| 彭泽县| 石屏县| 柳林县| 楚雄市| 文昌市| 图们市| 唐河县| 阜新| 剑河县|