最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

宇宙年表

2023-03-21 03:11 作者:夢雪的花兒  | 我要投稿

提示:本次是百度百科“宇宙年表”第10版,一部分有錯別字或者缺少字(原錯別字保留),已經(jīng)修改或者彌補(見紅字)。

宇宙年表是依據(jù)大爆炸宇宙學描述宇宙的歷史和未來,是宇宙如何應運而生和隨著時間推移發(fā)展的主要科學模型,使用共動座標宇宙論的時間參數(shù)。

非常早期的宇宙

關于極早期宇宙的所有想法 (宇宙觀) 都是純理論的推測 (或許有些帶點投機)。目前還沒有加速器擁有足夠的能量規(guī)模,可以提供任何實驗來洞察在此期間普遍存在于各級能量的行為和問題。研擬的方案可能截然不同,下面是一些例子:哈德利-霍金初始狀態(tài)、弦論、跨模暴脹、弦氣宇宙論、和火劫宇宙論。其中有些是相容并蓄的,有些則不是。

普朗克時期

從大爆炸開始至10^-43

在傳統(tǒng)上的大爆炸宇宙論,普朗克時期是一個溫度非常高的時期 (非暴脹),它的溫度高到足以讓四種基本力 -?電磁力、引力、弱核力和強核力?- 都統(tǒng)合成一種基本力。各種不同方案提出的理論,對這種溫度下的物理所知甚少。傳統(tǒng)的大爆炸宇宙論預測在此之前是引力奇點,但是這種論述是建立在廣義相對論上的說法,預期將會受到量子效應的挑戰(zhàn)而破滅。物理學家寄望量子引力,像是弦論、圈量子引力論和因果論,最終將能更好的詮釋這個時期。 在暴脹宇宙論,暴脹結束前的時間 (大約在大爆炸之后10^-32秒) 并不遵循傳統(tǒng)的大爆炸時間軸。暴脹結束前的宇宙是極度的接近真空,有著非常低的真空溫度,并且存在得比10^-32秒更長。暴脹結束的時間是依據(jù)非暴脹大爆炸模型的時間基礎,不是宇宙在當時的實際年齡,而這在暴脹宇宙論中是無法測量的。因此,在暴脹宇宙論中沒有傳統(tǒng)大爆炸理論所謂的普朗克時期,但有一個類似的前暴脹時期的宇宙存在著相似的條件。

大一統(tǒng)時期

從大爆炸之后10^-43秒至10^-36

當宇宙膨脹和冷卻時,各種力跨越轉換中的溫度彼此分離出來,這很像是冷凝和凍結的相變。大一統(tǒng)時期開始于引力從其它自然力中的分離,它們統(tǒng)稱為規(guī)范場力。這個時期是非引力物理所描述的大統(tǒng)一理論。大一統(tǒng)時期結束于規(guī)范場力進一步分離出強作用力和電弱力。這種轉變應該產生大量的磁單極,但它們未被觀測到。磁單極的缺乏是引進暴脹所解決掉的一個問題。

在現(xiàn)代的暴脹宇宙學,大一統(tǒng)時期就像普朗克時期一樣是不存在的,但是類似的條件可能存在于暴脹之前的宇宙中。

電弱時期

從大爆炸之后10^-36秒至10^-12

在傳統(tǒng)的大爆炸理論,電弱時期開始于大爆炸之后10^-36秒,當時的宇宙溫度 (10^28K) 已經(jīng)低到強力可以與電弱力 (電磁力和弱作用力結合成一種力的名稱) 分離。在暴脹宇宙學,電弱時期開始于暴脹時期的結束,大約是在10^-32秒。

暴脹時期

從大爆炸之后10^-36秒至10^-32

宇宙暴脹發(fā)生的時間和溫度都不是很確定的知道。但是目前一般的理論認為在暴脹的階段,宇宙的尺度膨脹了e^70左右。由于這個巨大的膨脹,在暴脹階段結束之后,宇宙的空間曲率變成平坦的。之后宇宙進入均質和各向同性膨脹的階段。量子擾動是形成我們今天所觀測到的結構的根本。例如微波背景輻射的各向異性,它的起源就是暴脹時期的量子擾動,在暴脹時被拉出了宇宙的視界,然后又在現(xiàn)在重新進入視界被我們觀測到。理論計算給出,這些擾動的功率譜是標度不變的。這已經(jīng)被我們對微波背景輻射的功率譜的實驗觀測所證實,成為對暴脹的一個有力支持。隨著快速的擴張,有些能量形成光子,變成虛夸克和超子,但這些粒子衰變得很快。有些理論建議在宇宙暴脹之前,宇宙是冰冷且空無一物的,而巨大的熱和能量通過在大爆炸早期的相變中被創(chuàng)造出來,并導致暴脹的結束。

再加熱

當再加熱時,暴脹不再以指數(shù)的形式進行并且成為暴脹子的位能,場衰變成為熱能,與相對論性等離子體的粒子。如果大一統(tǒng)是我們宇宙的特征,則宇宙暴脹應該是在大一統(tǒng)之前或之后,對稱是殘破的,否則磁單極將出現(xiàn)在可見的宇宙中。在這個時間點上,宇宙是由輻射控制的,夸克、電子和中微子的形式。

重子產生過程

目前還沒有足夠的觀測證據(jù)可以解釋為何宇宙中的重子會比反重子多。為了能解釋這樣的比值,Sakharov情況必須在暴脹之后的某個期間出現(xiàn)。當考慮到這樣的情景時,在粒子物理學的實驗中觀察這種現(xiàn)象,但觀測到的非對稱性太小,以致不能滿足宇宙中觀測到的非對稱性。

早期的宇宙

在宇宙暴脹結束之后,宇宙中充滿了夸克-膠子等離子體。從這點向前,早期宇宙的物理被了解的較多,猜測的成份也比較少。

超對稱的破壞

如果超對稱是我們宇宙的產物,當能量低于1TeV的電弱對稱尺度時,它將受到破壞。微粒的質量和它們的超伴子不再是相等的,這可以解釋為何已知的超伴子微粒未能被觀測到。

夸克時期

在大爆炸之后10^-12秒至10^-6

當電弱對稱被破壞時,電弱時期就結束了。所有的基本粒子應該通過希格斯機制獲取大量的希格斯玻色子得到質量,并得到真空期望值?;A相互作用力的引力、電磁力、強核力和弱核力都形成現(xiàn)在的形式,但是宇宙的溫度還是太高,以至于不允許夸克束縛在一起形成強子。

強子時期

在大爆炸之后10^-6秒至1

組成宇宙的夸克-膠子電將繼續(xù)冷卻,直到包括質子、中子的強子可以形成。大約在大爆炸之后的1秒鐘,中微子分離出來并且可以在太空中自由通行。這種宇宙中微子背景輻射類似于以后發(fā)散出來的宇宙微波背景輻射,目前還不能仔細的觀察(參考上面關于在弦論時期中的夸克-膠子等離子體。)。

輕子時期

在大爆炸之后1秒至10秒鐘

在強子時期的末期,多數(shù)的強子和反強子互相湮滅,留下的輕子和反輕子成為控制宇宙的主要質量。大約在大爆炸之后的10秒鐘,宇宙的溫度冷卻到輕子/反輕子對不再能創(chuàng)造出來,并且多數(shù)的輕子和反輕子在湮滅反應中被消滅掉,只留下少量殘余的輕子。

光子時期

在大爆炸之后10秒鐘至380,000

在多數(shù)的輕子和反輕子湮滅之際的輕子時期結尾,宇宙的能量是由光子控制的。這些光子頻繁的和帶電的質子、電子和可能存在的少量核子進行相互作用,并且持續(xù)進行到300,000年。

核合成

在大爆炸之后3分鐘至20分鐘

在光子時期,宇宙的溫度下降至原子核可以開始形成的溫度。質子(氫離子)和中子開始進行結合成原子核的核聚變程序。但是核合成的時間只有短短的17分鐘,之后宇宙溫度和密度的下降使核聚變不能再持續(xù)的進行。這時氫核的質量數(shù)大約是氦核的三倍,其它的原子核只有微量。

物質主導:70,000年

在這個時期,非相對論性的物質 (原子核) 與相對論性的輻射 (光子) 密度相等。 金斯長度,確定能夠構成的最小結構 (由于引力吸引和壓力的影響互相競爭),開始形成和造成擾動,而不是被自由流的輻射消滅,可以開始有成長的幅度。

根據(jù)ΛCDM,在現(xiàn)階段,冷暗物質主導下,使引力坍塌造成的宇宙不均勻性在宇宙膨脹的過程中被放大,使稠密地區(qū)更稠密度而稀薄的地區(qū)更稀薄。但是,現(xiàn)今的理論對暗物質的本質還沒有定論,對目前存在的重子物直(質)是否起源于更早的時期也還沒有共識下。

復合:377,000年

氫和氦的原子開始形成時,宇宙的密度也在下降。這個時間被認為發(fā)生在大爆炸之后的377,000年,氫和氦再度游離,也就是原子核不再束縛住電子,因此核帶有電量 (各自帶有+1或+2)。當宇宙的溫度降低,電子會再度被離子捕獲,使電性中和。這個過程相對來說是快速的 (實際上氦核的速度比氫核快),也就是所謂的復合。當復合結束時,宇宙中的原子幾乎都是中性的,因此光子可以自由的移動:宇宙也變得清澈透明了。光子輻射的光在復合之后.能不受阻礙的通行并且成為我們看見的宇宙微波背景輻射。因此宇宙微波背景?(CMB) 是這個時期的結束。

黑暗時期(Dark ages)

在退耦發(fā)生之前,多數(shù)的光子會和電子和質子在光子-重子液中發(fā)生相互作用,造成的結果是宇宙不透明或是"霧狀"。雖然有光線,但是沒有光線可以抵達望遠鏡。在宇宙中的重子物質包括電離的等離子體,它只能在和自由電子"再結合"的期間成為中性,進而釋放出創(chuàng)造宇宙微波背景輻射的光子。當光子被釋放(或是退耦),宇宙變成透明,但在這時只有中性氫自旋的21厘米波長的輻射。這是目前觀測上努力進行檢測的微弱輻射,原則上這是一種更強大的工具,能研究比微波背景輻射更早期的宇宙。

結構形成

大爆炸模型中的結構是層層節(jié)制的,具有較小的結構會在較大的結構之前先形成。最早形成的結構是類星體,它們被認為是明亮的、早期的活躍星系,和第三星族星。在這個時期之前,宇宙的發(fā)展可以通過線性宇宙論的攝動理論來了解:也就是說,所有的結構都可以理解為是一個完美、均質宇宙的小變化,這是通過計算相對來說較容易的研究。非線性的結構從這個點上開始形成,計算上的問題就變得更加困難,包括,例如,數(shù)十億顆粒子的多體模擬。

再電離:從1億5000萬年至10億年

參見:再電離及21厘米線

第一批類星體是從引力坍縮形成的,它們發(fā)出的強烈輻射使周圍的宇宙再電離。從這個時間點開始,宇宙的大部份都由等離子體組成。

恒星的形成

參見:恒星形成

恒星形成是分子云的高密度區(qū)崩潰成為球形的等離子體形成恒星的過程。作為天文物理的一個分支,恒星形成的研究包括作為前導的星際物質和巨分子云,到恒星形成過程,早期型恒星和行星形成則是直接的成果。恒星形成的理論,不僅是一顆單獨恒星的形成,還必須統(tǒng)計聯(lián)星和初始質量函數(shù)。

星系的形成

參見:星系的形成和演化

星系是如何形成的,依然是天文物理學中最活躍的一個研究領域,并且繼續(xù)延伸至星系演化的領域,而有些觀念與看法已經(jīng)被廣泛的接受。從宇宙微波背景輻射的觀測已經(jīng)證實,在大爆炸之后,宇宙有一段時間是非常同質性的,其間的起伏低于十萬分之一。今天最能被接受的觀點是原始擾動的成長形成今天我們所觀察到的所有結構,原始擾動誘發(fā)局部地區(qū)氣體的物質密度增加,形成星團和恒星。這種模型的一種結果是在早期宇宙的一些地區(qū)因為有較高一點的密度而形形成了星系, 因此星系的誕生與早期宇宙的物理息息相關。

星系群、星系團與超星系團的形成:25億年前

參見:大尺度結構

大尺度結構在物理宇宙學中是描述可觀測宇宙在大范圍內(典型的尺度是十億光年)質量和光的分布特征。巡天和各種不同電磁波輻射波長的調查和描繪,特別是21厘米輻射,獲得了許多宇宙結構的內容和特性。結構的組織看起來是跟隨著等級制度的模型,以超星系團和纖維狀結構的尺度為最上層,再大的似乎就沒有連續(xù)的結構了,這所指的就是偉大的結局現(xiàn)象。

太陽系的形成:46億年前

參見:太陽系的形成與演化

一個原行星盤的藝術想像圖 太陽系的形成和演化始于46億年前一片巨大分子云中一小塊的引力坍縮。大多坍縮的質量集中在中心,形成了太陽,其余部分攤平并形成了一個原行星盤,繼而形成了行星、衛(wèi)星、隕星和其他小型的太陽系天體系統(tǒng)。 這被稱為星云假說的廣泛接受模型,最早是由18世紀的伊曼紐·斯威登堡、伊曼努爾·康德和皮埃爾-西蒙·拉普拉斯提出。其隨后的發(fā)展與天文學、物理學、地質學和行星學等多種科學領域相互交織。自1950年代太空時代降臨,以及1990年代太陽系外行星的發(fā)現(xiàn),此模型在解釋新發(fā)現(xiàn)的過程中受到挑戰(zhàn)又被進一步完善化。 從形成開始至今,太陽系經(jīng)歷了相當大的變化。有很多衛(wèi)星由環(huán)繞其母星氣體與塵埃組成的星盤中形成,其他的衛(wèi)星據(jù)信是俘獲而來,或者來自于巨大的碰撞(地球的衛(wèi)星月球屬此情況)。天體間的碰撞至今都持續(xù)發(fā)生,并為太陽系演化的中心。行星的位置經(jīng)常遷移,某些行星間已經(jīng)彼此易位。這種行星遷移現(xiàn)在被認為對太陽系早期演化起負擔起絕大部分的作用。 就如同太陽和行星的出生一樣,它們最終將滅亡。大約50億年后,太陽會冷卻并向外膨脹超過現(xiàn)在的直徑很多倍(成為一個紅巨星),拋去它的外層成為行星狀星云,并留下被稱為白矮星的恒星尸骸。在遙遠的未來,太陽的環(huán)繞行星會逐漸被經(jīng)過的恒星的引力卷走。它們中的一些會被毀掉,另一些則會被拋向星際間的太空。最終,數(shù)萬億年之后,太陽終將會獨自一個,不再有其它天體在太陽系軌道上。



宇宙年表的評論 (共 條)

分享到微博請遵守國家法律
辛集市| 定安县| 福州市| 左权县| 沐川县| 湖口县| 泉州市| 达日县| 元江| 新建县| 遵义市| 永和县| 平原县| 仙游县| 永善县| 普兰店市| 德化县| 内丘县| 韩城市| 泸定县| 右玉县| 西乌珠穆沁旗| 满城县| 宽城| 高阳县| 仙游县| 巴马| 德阳市| 平顺县| 定南县| 平江县| 东城区| 隆安县| 广河县| 磐石市| 娄底市| 雷山县| 肥西县| 周口市| 红原县| 丰宁|