最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

Jensen零點(diǎn)公式

2022-08-05 19:45 作者:子瞻Louis  | 我要投稿

考慮一個(gè)?%7Cz%7C%5Cle%20R?內(nèi)全純的函數(shù) F(z) ,?記它在?%7Cz%7C%5Cle%20r 內(nèi)的零點(diǎn)個(gè)數(shù)為 n(r)?(算上零點(diǎn)的重?cái)?shù)),則根據(jù)經(jīng)典的輻角定理,可得:

n(r)%3D%5Cfrac1%7B2%5Cpi%20i%7D%5Coint_%7B%7Cz%7C%3Dr%7D%5Cfrac%7BF'%7D%7BF%7D(z)%5Cmathrm%20dz%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_0%5E%7B2%5Cpi%7D%5Cfrac%7BF'%7D%7BF%7D(re%5E%7Bi%5Ctheta%7D)re%5E%7Bi%5Ctheta%7D%5Cmathrm%20d%5Ctheta

將它除以r后從0到R積分,由于左側(cè)是實(shí)數(shù),所以先對(duì)右側(cè)取實(shí)部,

%5Cbegin%7Baligned%7D%5Cint_%7B0%7D%5ER%5Cfrac%7Bn(r)%7Dr%5Cmathrm%20dr%26%3D%5Cfrac1%7B2%5Cpi%7D%5CRe%5Cint_0%5ER%5Cint_0%5E%7B2%5Cpi%7D%5Cfrac%7BF'%7D%7BF%7D(re%5E%7Bi%5Ctheta%7D)e%5E%7Bi%5Ctheta%7D%5Cmathrm%20d%5Ctheta%5Cmathrm%20dr%5C%5C%26%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_0%5E%7B2%5Cpi%7D%5Cln%7CF(Re%5E%7Bi%5Ctheta%7D)%7C%5Cmathrm%20d%5Ctheta-%5Cln%7CF(0)%7C%5Cend%7Baligned%7D

然鵝對(duì)r的積分過程,r會(huì)取遍所有零點(diǎn)的模,我們要驗(yàn)證取到這些r時(shí)并不會(huì)對(duì)積分結(jié)果造成影響:取?F?在?%7Cz%7C%5Cle%20R?內(nèi)的所有零點(diǎn)的模,并將他們從小到大排列:

?0%3Dr_0%3Cr_1%3C%5Cdots%3Cr_n%5Cle%20R%3Dr_%7Bn%2B1%7D?

我們打算證明對(duì)每個(gè)?0%5Cle%20i%5Cle%20n

%5Clim_%7B%5Cepsilon%5Cto0%5E%2B%7D%5Cint_%7B0%7D%5E%7B2%5Cpi%7D%5Cln%5Cleft%7C%5Cfrac%7BF((1%2B%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D)%7D%7BF((1-%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D)%7D%5Cright%7C%5Cmathrm%20d%5Ctheta%3D0

設(shè)?z_1%2C%5Cdots%2Cz_m?是?F(z)?在圓?%7Cz%7C%3Dr_i?上的所有零點(diǎn)(多重零點(diǎn)按重?cái)?shù)計(jì)算),那么它就可以被分解為

F(z)%3DG(z)%5Cprod_%7Bj%3D1%7D%5Em(z-z_j)

其中 G 是一個(gè)在該圓上沒有零點(diǎn)的全純函數(shù),由此有

%5Cln%7CF(re%5E%7Bi%5Ctheta%7D)%7C%3D%5Csum_%7Bj%3D1%7D%5Em%5Cln%7Cre%5E%7Bi%5Ctheta%7D-z_j%7C%2B%5Cln%7CG(re%5E%7Bi%5Ctheta%7D)%7C

取?r%3D(1%2B%5Cepsilon)r_i%2Cr%3D(1-%5Cepsilon)r_i?并積分后相減,得

%5Cint_%7B0%7D%5E%7B2%5Cpi%7D%5Cln%5Cleft%7C%5Cfrac%7BF((1%2B%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D)%7D%7BF((1-%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D)%7D%5Cright%7C%5Cmathrm%20d%5Ctheta%3D%5Csum_%7Bj%3D1%7D%5Em%5Cint_%7B0%7D%5E%7B2%5Cpi%7D%5Cln%5Cleft%7C%5Cfrac%7B(1%2B%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D-z_j%7D%7B(1-%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D-z_j%7D%5Cright%7C%5Cmathrm%20d%5Ctheta

因?yàn)?z_j?模長為?r_i?,所以對(duì)每個(gè)?j ,有

%5Cint_%7B0%7D%5E%7B2%5Cpi%7D%5Cln%5Cleft%7C%5Cfrac%7B(1%2B%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D-z_j%7D%7B(1-%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D-z_j%7D%5Cright%7C%5Cmathrm%20d%5Ctheta%3D%5Cint_%7B-%5Cpi%7D%5E%7B%5Cpi%7D%5Cln%5Cleft%7C%5Cfrac%7B(1%2B%5Cepsilon)e%5E%7Bi%5Ctheta%7D-1%7D%7B(1-%5Cepsilon)e%5E%7Bi%5Ctheta%7D-1%7D%5Cright%7C%5Cmathrm%20d%5Ctheta

又由于

%5Cleft%7C%5Cfrac%7B(1%2B%5Cepsilon)e%5E%7Bi%5Ctheta%7D-1%7D%7B(1-%5Cepsilon)e%5E%7Bi%5Ctheta%7D-1%7D%5Cright%7C%5E2%3D%5Cfrac%7B%5Cepsilon%5E2%2B4(1%2B%5Cepsilon)%5Csin%5E2%5Cfrac12%5Ctheta%7D%7B%5Cepsilon%5E2%2B4(1-%5Cepsilon)%5Csin%5E2%5Cfrac12%5Ctheta%7D%3D1%2B%5Cmathcal%20O(%5Cepsilon)

所以確實(shí)有

%5Clim_%7B%5Cepsilon%5Cto0%5E%2B%7D%5Cint_%7B0%7D%5E%7B2%5Cpi%7D%5Cln%5Cleft%7C%5Cfrac%7BF((1%2B%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D)%7D%7BF((1-%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D)%7D%5Cright%7C%5Cmathrm%20d%5Ctheta%3D0

這也就證明了以下定理:

(Jensen零點(diǎn)公式)對(duì)?%7Cz%7C%5Cle%20R?內(nèi)全純的函數(shù)?F(z)?,以?n(r)?表示它在?%7Cz%7C%5Cle%20r?內(nèi)的零點(diǎn)個(gè)數(shù)(算上零點(diǎn)的重?cái)?shù)),則

  • %5Cint_0%5ER%5Cfrac%7Bn(r)%7Dr%5Cmathrm%20dr%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_0%5E%7B2%5Cpi%7D%5Cln%7CF(Re%5E%7Bi%5Ctheta%7D)%7C%5Cmathrm%20d%5Ctheta-%5Cln%7CF(0)%7C

將右側(cè)的積分用分部積分可得

%5Cint_0%5ER%5Cfrac%7Bn(r)%7Dr%5Cmathrm%20dr%3Dn(R)%5Clog%20R-%5Cint_0%5ER%5Clog%20r%5Cmathrm%20dn(r)

設(shè)?z_1%2C%5Cdots%2Cz_%7Bn(R)%7D?為?F?在?%7Cz%7C%5Cle%20R?內(nèi)的所有零點(diǎn),則有

%5Cint_0%5ER%5Clog%20r%5Cmathrm%20dn(r)%3D%5Csum_%7Bi%3D1%7D%5E%7Bn(R)%7D%5Clog%20%7Cz_i%7C

由此便可得Jensen公式最常見的一種形式:

%5Cfrac1%7B2%5Cpi%7D%5Cint_0%5E%7B2%5Cpi%7D%5Cln%7CF(Re%5E%7Bi%5Ctheta%7D)%7C%5Cmathrm%20d%5Ctheta%3D%5Cln%7CF(0)%7C%2B%5Clog%5Cprod_%7Bi%3D1%7D%5E%7Bn(R)%7D%5Cleft%7C%5Cfrac%7BR%7D%7Bz_i%7D%5Cright%7C

Jensen零點(diǎn)公式的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國家法律
普兰县| 夏津县| 安化县| 嵊泗县| 厦门市| 荆门市| 东乡县| 仙游县| 徐闻县| 丰台区| 晋江市| 兰西县| 屯门区| 梨树县| 建湖县| 武清区| 女性| 山西省| 漳州市| 新宾| 奎屯市| 宁南县| 安顺市| 信宜市| 资阳市| 金阳县| 东兰县| 平遥县| 门头沟区| 晋中市| 通州区| 唐山市| 仙桃市| 鹰潭市| 三河市| 同仁县| 嘉兴市| 乌鲁木齐市| 廉江市| 云和县| 台中县|