最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

精通 TensorFlow 1.x 中文版(初稿)

2019-09-25 10:15 作者:絕不原創(chuàng)的飛龍  | 我要投稿
  • TensorFlow 101(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/8.md)

  • 什么是 TensorFlow?(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/9.md)

  • TensorFlow 核心(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/10.md)

  • 代碼預(yù)熱 - Hello TensorFlow(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/11.md)

  • 張量(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/12.md)

  • 常量(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/13.md)

  • 操作(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/14.md)

  • 占位符(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/15.md)

  • 從 Python 對(duì)象創(chuàng)建張量(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/16.md)

  • 變量(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/17.md)

  • 從庫函數(shù)生成的張量(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/18.md)

  • 使用相同的值填充張量元素(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/19.md)

  • 用序列填充張量元素(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/20.md)

  • 使用隨機(jī)分布填充張量元素(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/21.md)

  • 使用tf.get_variable()獲取變量(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/22.md)

  • 數(shù)據(jù)流圖或計(jì)算圖(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/23.md)

  • 執(zhí)行順序和延遲加載(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/24.md)

  • 跨計(jì)算設(shè)備執(zhí)行圖 - CPU 和 GPU(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/25.md)

  • 將圖節(jié)點(diǎn)放置在特定的計(jì)算設(shè)備上(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/26.md)

  • 簡(jiǎn)單放置(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/27.md)

  • 動(dòng)態(tài)展示位置(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/28.md)

  • 軟放置(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/29.md)

  • GPU 內(nèi)存處理(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/30.md)

  • 多個(gè)圖(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/31.md)

  • TensorBoard(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/32.md)

  • TensorBoard 最小的例子(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/33.md)

  • TensorBoard 詳情(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/34.md)

  • 總結(jié)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/35.md)

  • TensorFlow 的高級(jí)庫(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/36.md)

  • TF Estimator - 以前的 TF 學(xué)習(xí)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/37.md)

  • TF Slim(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/38.md)

  • TFLearn(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/39.md)

  • 創(chuàng)建 TFLearn 層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/40.md)

  • TFLearn 核心層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/41.md)

  • TFLearn 卷積層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/42.md)

  • TFLearn 循環(huán)層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/43.md)

  • TFLearn 正則化層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/44.md)

  • TFLearn 嵌入層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/45.md)

  • TFLearn 合并層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/46.md)

  • TFLearn 估計(jì)層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/47.md)

  • 創(chuàng)建 TFLearn 模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/48.md)

  • TFLearn 模型的類型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/49.md)

  • 訓(xùn)練 TFLearn 模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/50.md)

  • 使用 TFLearn 模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/51.md)

  • PrettyTensor(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/52.md)

  • Sonnet(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/53.md)

  • 總結(jié)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/54.md)

  • Keras 101(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/55.md)

  • 安裝 Keras(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/56.md)

  • Keras 中的神經(jīng)網(wǎng)絡(luò)模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/57.md)

  • 在 Keras 建立模型的工作流程(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/58.md)

  • 創(chuàng)建 Keras 模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/59.md)

  • 用于創(chuàng)建 Keras 模型的順序 API(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/60.md)

  • 用于創(chuàng)建 Keras 模型的函數(shù)式 API(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/61.md)

  • Keras 層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/62.md)

  • Keras 核心層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/63.md)

  • Keras 卷積層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/64.md)

  • Keras 池化層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/65.md)

  • Keras 本地連接層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/66.md)

  • Keras 循環(huán)層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/67.md)

  • Keras 嵌入層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/68.md)

  • Keras 合并層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/69.md)

  • Keras 高級(jí)激活層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/70.md)

  • Keras 正則化層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/71.md)

  • Keras 噪音層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/72.md)

  • 將層添加到 Keras 模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/73.md)

  • 用于將層添加到 Keras 模型的順序 API(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/74.md)

  • 用于向 Keras 模型添加層的函數(shù)式 API(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/75.md)

  • 編譯 Keras 模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/76.md)

  • 訓(xùn)練 Keras 模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/77.md)

  • 使用 Keras 模型進(jìn)行預(yù)測(cè)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/78.md)

  • Keras 的附加模塊(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/79.md)

  • MNIST 數(shù)據(jù)集的 Keras 序列模型示例(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/80.md)

  • 總結(jié)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/81.md)

  • 使用 TensorFlow 進(jìn)行經(jīng)典機(jī)器學(xué)習(xí)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/82.md)

  • 簡(jiǎn)單的線性回歸(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/83.md)

  • 數(shù)據(jù)準(zhǔn)備(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/84.md)

  • 構(gòu)建一個(gè)簡(jiǎn)單的回歸模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/85.md)

  • 定義輸入,參數(shù)和其他變量(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/86.md)

  • 定義模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/87.md)

  • 定義損失函數(shù)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/88.md)

  • 定義優(yōu)化器函數(shù)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/89.md)

  • 訓(xùn)練模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/90.md)

  • 使用訓(xùn)練的模型進(jìn)行預(yù)測(cè)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/91.md)

  • 多元回歸(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/92.md)

  • 正則化回歸(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/93.md)

  • 套索正則化(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/94.md)

  • 嶺正則化(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/95.md)

  • ElasticNet 正則化(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/96.md)

  • 使用邏輯回歸進(jìn)行分類(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/97.md)

  • 二分類的邏輯回歸(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/98.md)

  • 多類分類的邏輯回歸(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/99.md)

  • 二分類(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/100.md)

  • 多類分類(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/101.md)

  • 總結(jié)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/102.md)

  • 使用 TensorFlow 和 Keras 的神經(jīng)網(wǎng)絡(luò)和 MLP(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/103.md)

  • 感知機(jī)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/104.md)

  • 多層感知機(jī)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/105.md)

  • 用于圖像分類的 MLP(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/106.md)

  • 用于 MNIST 分類的基于 TensorFlow 的 MLP(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/107.md)

  • 用于 MNIST 分類的基于 Keras 的 MLP(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/108.md)

  • 用于 MNIST 分類的基于 TFLearn 的 MLP(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/109.md)

  • 使用 TensorFlow,Keras 和 TFLearn 的 MLP 總結(jié)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/110.md)

  • 用于時(shí)間序列回歸的 MLP(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/111.md)

  • 總結(jié)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/112.md)

  • 使用 TensorFlow 和 Keras 的 RNN(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/113.md)

  • 簡(jiǎn)單循環(huán)神經(jīng)網(wǎng)絡(luò)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/114.md)

  • RNN 變種(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/115.md)

  • LSTM 網(wǎng)絡(luò)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/116.md)

  • GRU 網(wǎng)絡(luò)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/117.md)

  • TensorFlow RNN(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/118.md)

  • TensorFlow RNN 單元類(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/119.md)

  • TensorFlow RNN 模型構(gòu)建類(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/120.md)

  • TensorFlow RNN 單元包裝器類(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/121.md)

  • 適用于 RNN 的 Keras(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/122.md)

  • RNN 的應(yīng)用領(lǐng)域(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/123.md)

  • 用于 MNIST 數(shù)據(jù)的 Keras 中的 RNN(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/124.md)

  • 總結(jié)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/125.md)

  • 使用 TensorFlow 和 Keras 的時(shí)間序列數(shù)據(jù)的 RNN(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/126.md)

  • 航空公司乘客數(shù)據(jù)集(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/127.md)

  • 加載 airpass 數(shù)據(jù)集(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/128.md)

  • 可視化 airpass 數(shù)據(jù)集(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/129.md)

  • 使用 TensorFlow RNN 模型預(yù)處理數(shù)據(jù)集(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/130.md)

  • TensorFlow 中的簡(jiǎn)單 RNN(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/131.md)

  • TensorFlow 中的 LSTM(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/132.md)

  • TensorFlow 中的 GRU(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/133.md)

  • 使用 Keras RNN 模型預(yù)處理數(shù)據(jù)集(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/134.md)

  • 使用 Keras 的簡(jiǎn)單 RNN(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/135.md)

  • 使用 Keras 的 LSTM(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/136.md)

  • 使用 Keras 的 GRU(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/137.md)

  • 總結(jié)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/138.md)

  • 使用 TensorFlow 和 Keras 的文本數(shù)據(jù)的 RNN(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/139.md)

  • 詞向量表示(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/140.md)

  • 為 word2vec 模型準(zhǔn)備數(shù)據(jù)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/141.md)

  • 加載和準(zhǔn)備 PTB 數(shù)據(jù)集(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/142.md)

  • 加載和準(zhǔn)備 text8 數(shù)據(jù)集(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/143.md)

  • 準(zhǔn)備小驗(yàn)證集(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/144.md)

  • 使用 TensorFlow 的 skip-gram 模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/145.md)

  • 使用 t-SNE 可視化單詞嵌入(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/146.md)

  • keras 的 skip-gram 模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/147.md)

  • 使用 TensorFlow 和 Keras 中的 RNN 模型生成文本(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/148.md)

  • TensorFlow 中的 LSTM 文本生成(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/149.md)

  • Keras 中的 LSTM 文本生成(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/150.md)

  • 總結(jié)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/151.md)

  • 使用 TensorFlow 和 Keras 的 CNN(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/152.md)

  • 理解卷積(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/153.md)

  • 了解池化(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/154.md)

  • CNN 架構(gòu)模式 - LeNet(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/155.md)

  • 用于 MNIST 數(shù)據(jù)的 LeNet(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/156.md)

  • 使用 TensorFlow 的用于 MNIST 的 LeNet CNN(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/157.md)

  • 使用 Keras 的用于 MNIST 的 LeNet CNN(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/158.md)

  • 用于 CIFAR10 數(shù)據(jù)的 LeNet(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/159.md)

  • 使用 TensorFlow 的用于 CIFAR10 的 ConvNets(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/160.md)

  • 使用 Keras 的用于 CIFAR10 的 ConvNets(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/161.md)

  • 總結(jié)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/162.md)

  • 使用 TensorFlow 和 Keras 的自編碼器(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/163.md)

  • 自編碼器類型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/164.md)

  • TensorFlow 中的棧式自編碼器(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/165.md)

  • Keras 中的棧式自編碼器(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/166.md)

  • TensorFlow 中的去噪自編碼器(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/167.md)

  • Keras 中的去噪自編碼器(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/168.md)

  • TensorFlow 中的變分自編碼器(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/169.md)

  • Keras 中的變分自編碼器(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/170.md)

  • 總結(jié)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/171.md)

  • TF 服務(wù):生產(chǎn)中的 TensorFlow 模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/172.md)

  • 在 TensorFlow 中保存和恢復(fù)模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/173.md)

  • 使用保護(hù)程序類保存和恢復(fù)所有圖變量(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/174.md)

  • 使用保護(hù)程序類保存和恢復(fù)所選變量(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/175.md)

  • 保存和恢復(fù) Keras 模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/176.md)

  • TensorFlow 服務(wù)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/177.md)

  • 安裝 TF 服務(wù)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/178.md)

  • 保存 TF 服務(wù)的模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/179.md)

  • 提供 TF 服務(wù)模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/180.md)

  • 在 Docker 容器中提供 TF 服務(wù)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/181.md)

  • 安裝 Docker(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/182.md)

  • 為 TF 服務(wù)構(gòu)建 Docker 鏡像(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/183.md)

  • 在 Docker 容器中提供模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/184.md)

  • Kubernetes 中的 TensorFlow 服務(wù)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/185.md)

  • 安裝 Kubernetes(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/186.md)

  • 將 Docker 鏡像上傳到 dockerhub(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/187.md)

  • 在 Kubernetes 部署(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/188.md)

  • 總結(jié)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/189.md)

  • 遷移學(xué)習(xí)和預(yù)訓(xùn)練模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/190.md)

  • ImageNet 數(shù)據(jù)集(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/191.md)

  • 再訓(xùn)練或微調(diào)模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/192.md)

  • COCO 動(dòng)物數(shù)據(jù)集和預(yù)處理圖像(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/193.md)

  • TensorFlow 中的 VGG16(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/194.md)

  • 使用 TensorFlow 中預(yù)訓(xùn)練的 VGG16 進(jìn)行圖像分類(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/195.md)

  • TensorFlow 中的圖像預(yù)處理,用于預(yù)訓(xùn)練的 VGG16(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/196.md)

  • 使用 TensorFlow 中的再訓(xùn)練的 VGG16 進(jìn)行圖像分類(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/197.md)

  • Keras 的 VGG16(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/198.md)

  • 使用 Keras 中預(yù)訓(xùn)練的 VGG16 進(jìn)行圖像分類(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/199.md)

  • 使用 Keras 中再訓(xùn)練的 VGG16 進(jìn)行圖像分類(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/200.md)

  • TensorFlow 中的 Inception v3(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/201.md)

  • 使用 TensorFlow 中的 Inception v3 進(jìn)行圖像分類(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/202.md)

  • 使用 TensorFlow 中的再訓(xùn)練的 Inception v3 進(jìn)行圖像分類(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/203.md)

  • 總結(jié)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/204.md)

  • 深度強(qiáng)化學(xué)習(xí)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/205.md)

  • OpenAI Gym 101(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/206.md)

  • 將簡(jiǎn)單的策略應(yīng)用于 cartpole 游戲(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/207.md)

  • 強(qiáng)化學(xué)習(xí) 101(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/208.md)

  • Q 函數(shù)(在模型不可用時(shí)學(xué)習(xí)優(yōu)化)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/209.md)

  • RL 算法的探索與開發(fā)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/210.md)

  • V 函數(shù)(模型可用時(shí)學(xué)習(xí)優(yōu)化)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/211.md)

  • 強(qiáng)化學(xué)習(xí)技巧(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/212.md)

  • 強(qiáng)化學(xué)習(xí)的樸素神經(jīng)網(wǎng)絡(luò)策略(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/213.md)

  • 實(shí)現(xiàn) Q-Learning(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/214.md)

  • Q-Learning 的初始化和離散化(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/215.md)

  • 使用 Q-Table 進(jìn)行 Q-Learning(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/216.md)

  • Q-Network 或深 Q 網(wǎng)絡(luò)(DQN)的 Q-Learning(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/217.md)



精通 TensorFlow 1.x 中文版(初稿)的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國家法律
海城市| 广河县| 嘉祥县| 吴忠市| 南通市| 万州区| 宜春市| 岗巴县| 宕昌县| 白城市| 扎鲁特旗| 东乡县| 丹东市| 绩溪县| 清远市| 通江县| 孟津县| 宝山区| 托克逊县| 江华| 静宁县| 卓尼县| 石河子市| 金堂县| 任丘市| 阳山县| 阿克苏市| 固镇县| 彭山县| 武清区| 宁阳县| 祁门县| 中方县| 三穗县| 乌恰县| 光山县| 拜泉县| 青铜峡市| 沂源县| 辉县市| 宁陵县|