精通 TensorFlow 1.x 中文版(初稿)

TensorFlow 101(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/8.md)
什么是 TensorFlow?(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/9.md)
TensorFlow 核心(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/10.md)
代碼預(yù)熱 - Hello TensorFlow(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/11.md)
張量(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/12.md)
常量(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/13.md)
操作(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/14.md)
占位符(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/15.md)
從 Python 對(duì)象創(chuàng)建張量(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/16.md)
變量(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/17.md)
從庫函數(shù)生成的張量(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/18.md)
使用相同的值填充張量元素(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/19.md)
用序列填充張量元素(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/20.md)
使用隨機(jī)分布填充張量元素(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/21.md)
使用tf.get_variable()獲取變量(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/22.md)
數(shù)據(jù)流圖或計(jì)算圖(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/23.md)
執(zhí)行順序和延遲加載(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/24.md)
跨計(jì)算設(shè)備執(zhí)行圖 - CPU 和 GPU(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/25.md)
將圖節(jié)點(diǎn)放置在特定的計(jì)算設(shè)備上(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/26.md)
簡(jiǎn)單放置(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/27.md)
動(dòng)態(tài)展示位置(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/28.md)
軟放置(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/29.md)
GPU 內(nèi)存處理(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/30.md)
多個(gè)圖(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/31.md)
TensorBoard(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/32.md)
TensorBoard 最小的例子(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/33.md)
TensorBoard 詳情(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/34.md)
總結(jié)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/35.md)
TensorFlow 的高級(jí)庫(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/36.md)
TF Estimator - 以前的 TF 學(xué)習(xí)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/37.md)
TF Slim(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/38.md)
TFLearn(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/39.md)
創(chuàng)建 TFLearn 層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/40.md)
TFLearn 核心層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/41.md)
TFLearn 卷積層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/42.md)
TFLearn 循環(huán)層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/43.md)
TFLearn 正則化層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/44.md)
TFLearn 嵌入層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/45.md)
TFLearn 合并層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/46.md)
TFLearn 估計(jì)層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/47.md)
創(chuàng)建 TFLearn 模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/48.md)
TFLearn 模型的類型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/49.md)
訓(xùn)練 TFLearn 模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/50.md)
使用 TFLearn 模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/51.md)
PrettyTensor(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/52.md)
Sonnet(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/53.md)
總結(jié)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/54.md)
Keras 101(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/55.md)
安裝 Keras(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/56.md)
Keras 中的神經(jīng)網(wǎng)絡(luò)模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/57.md)
在 Keras 建立模型的工作流程(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/58.md)
創(chuàng)建 Keras 模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/59.md)
用于創(chuàng)建 Keras 模型的順序 API(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/60.md)
用于創(chuàng)建 Keras 模型的函數(shù)式 API(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/61.md)
Keras 層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/62.md)
Keras 核心層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/63.md)
Keras 卷積層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/64.md)
Keras 池化層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/65.md)
Keras 本地連接層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/66.md)
Keras 循環(huán)層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/67.md)
Keras 嵌入層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/68.md)
Keras 合并層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/69.md)
Keras 高級(jí)激活層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/70.md)
Keras 正則化層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/71.md)
Keras 噪音層(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/72.md)
將層添加到 Keras 模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/73.md)
用于將層添加到 Keras 模型的順序 API(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/74.md)
用于向 Keras 模型添加層的函數(shù)式 API(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/75.md)
編譯 Keras 模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/76.md)
訓(xùn)練 Keras 模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/77.md)
使用 Keras 模型進(jìn)行預(yù)測(cè)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/78.md)
Keras 的附加模塊(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/79.md)
MNIST 數(shù)據(jù)集的 Keras 序列模型示例(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/80.md)
總結(jié)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/81.md)
使用 TensorFlow 進(jìn)行經(jīng)典機(jī)器學(xué)習(xí)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/82.md)
簡(jiǎn)單的線性回歸(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/83.md)
數(shù)據(jù)準(zhǔn)備(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/84.md)
構(gòu)建一個(gè)簡(jiǎn)單的回歸模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/85.md)
定義輸入,參數(shù)和其他變量(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/86.md)
定義模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/87.md)
定義損失函數(shù)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/88.md)
定義優(yōu)化器函數(shù)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/89.md)
訓(xùn)練模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/90.md)
使用訓(xùn)練的模型進(jìn)行預(yù)測(cè)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/91.md)
多元回歸(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/92.md)
正則化回歸(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/93.md)
套索正則化(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/94.md)
嶺正則化(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/95.md)
ElasticNet 正則化(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/96.md)
使用邏輯回歸進(jìn)行分類(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/97.md)
二分類的邏輯回歸(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/98.md)
多類分類的邏輯回歸(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/99.md)
二分類(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/100.md)
多類分類(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/101.md)
總結(jié)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/102.md)
使用 TensorFlow 和 Keras 的神經(jīng)網(wǎng)絡(luò)和 MLP(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/103.md)
感知機(jī)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/104.md)
多層感知機(jī)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/105.md)
用于圖像分類的 MLP(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/106.md)
用于 MNIST 分類的基于 TensorFlow 的 MLP(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/107.md)
用于 MNIST 分類的基于 Keras 的 MLP(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/108.md)
用于 MNIST 分類的基于 TFLearn 的 MLP(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/109.md)
使用 TensorFlow,Keras 和 TFLearn 的 MLP 總結(jié)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/110.md)
用于時(shí)間序列回歸的 MLP(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/111.md)
總結(jié)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/112.md)
使用 TensorFlow 和 Keras 的 RNN(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/113.md)
簡(jiǎn)單循環(huán)神經(jīng)網(wǎng)絡(luò)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/114.md)
RNN 變種(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/115.md)
LSTM 網(wǎng)絡(luò)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/116.md)
GRU 網(wǎng)絡(luò)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/117.md)
TensorFlow RNN(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/118.md)
TensorFlow RNN 單元類(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/119.md)
TensorFlow RNN 模型構(gòu)建類(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/120.md)
TensorFlow RNN 單元包裝器類(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/121.md)
適用于 RNN 的 Keras(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/122.md)
RNN 的應(yīng)用領(lǐng)域(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/123.md)
用于 MNIST 數(shù)據(jù)的 Keras 中的 RNN(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/124.md)
總結(jié)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/125.md)
使用 TensorFlow 和 Keras 的時(shí)間序列數(shù)據(jù)的 RNN(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/126.md)
航空公司乘客數(shù)據(jù)集(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/127.md)
加載 airpass 數(shù)據(jù)集(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/128.md)
可視化 airpass 數(shù)據(jù)集(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/129.md)
使用 TensorFlow RNN 模型預(yù)處理數(shù)據(jù)集(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/130.md)
TensorFlow 中的簡(jiǎn)單 RNN(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/131.md)
TensorFlow 中的 LSTM(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/132.md)
TensorFlow 中的 GRU(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/133.md)
使用 Keras RNN 模型預(yù)處理數(shù)據(jù)集(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/134.md)
使用 Keras 的簡(jiǎn)單 RNN(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/135.md)
使用 Keras 的 LSTM(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/136.md)
使用 Keras 的 GRU(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/137.md)
總結(jié)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/138.md)
使用 TensorFlow 和 Keras 的文本數(shù)據(jù)的 RNN(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/139.md)
詞向量表示(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/140.md)
為 word2vec 模型準(zhǔn)備數(shù)據(jù)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/141.md)
加載和準(zhǔn)備 PTB 數(shù)據(jù)集(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/142.md)
加載和準(zhǔn)備 text8 數(shù)據(jù)集(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/143.md)
準(zhǔn)備小驗(yàn)證集(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/144.md)
使用 TensorFlow 的 skip-gram 模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/145.md)
使用 t-SNE 可視化單詞嵌入(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/146.md)
keras 的 skip-gram 模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/147.md)
使用 TensorFlow 和 Keras 中的 RNN 模型生成文本(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/148.md)
TensorFlow 中的 LSTM 文本生成(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/149.md)
Keras 中的 LSTM 文本生成(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/150.md)
總結(jié)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/151.md)
使用 TensorFlow 和 Keras 的 CNN(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/152.md)
理解卷積(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/153.md)
了解池化(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/154.md)
CNN 架構(gòu)模式 - LeNet(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/155.md)
用于 MNIST 數(shù)據(jù)的 LeNet(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/156.md)
使用 TensorFlow 的用于 MNIST 的 LeNet CNN(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/157.md)
使用 Keras 的用于 MNIST 的 LeNet CNN(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/158.md)
用于 CIFAR10 數(shù)據(jù)的 LeNet(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/159.md)
使用 TensorFlow 的用于 CIFAR10 的 ConvNets(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/160.md)
使用 Keras 的用于 CIFAR10 的 ConvNets(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/161.md)
總結(jié)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/162.md)
使用 TensorFlow 和 Keras 的自編碼器(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/163.md)
自編碼器類型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/164.md)
TensorFlow 中的棧式自編碼器(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/165.md)
Keras 中的棧式自編碼器(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/166.md)
TensorFlow 中的去噪自編碼器(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/167.md)
Keras 中的去噪自編碼器(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/168.md)
TensorFlow 中的變分自編碼器(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/169.md)
Keras 中的變分自編碼器(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/170.md)
總結(jié)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/171.md)
TF 服務(wù):生產(chǎn)中的 TensorFlow 模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/172.md)
在 TensorFlow 中保存和恢復(fù)模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/173.md)
使用保護(hù)程序類保存和恢復(fù)所有圖變量(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/174.md)
使用保護(hù)程序類保存和恢復(fù)所選變量(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/175.md)
保存和恢復(fù) Keras 模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/176.md)
TensorFlow 服務(wù)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/177.md)
安裝 TF 服務(wù)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/178.md)
保存 TF 服務(wù)的模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/179.md)
提供 TF 服務(wù)模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/180.md)
在 Docker 容器中提供 TF 服務(wù)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/181.md)
安裝 Docker(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/182.md)
為 TF 服務(wù)構(gòu)建 Docker 鏡像(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/183.md)
在 Docker 容器中提供模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/184.md)
Kubernetes 中的 TensorFlow 服務(wù)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/185.md)
安裝 Kubernetes(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/186.md)
將 Docker 鏡像上傳到 dockerhub(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/187.md)
在 Kubernetes 部署(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/188.md)
總結(jié)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/189.md)
遷移學(xué)習(xí)和預(yù)訓(xùn)練模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/190.md)
ImageNet 數(shù)據(jù)集(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/191.md)
再訓(xùn)練或微調(diào)模型(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/192.md)
COCO 動(dòng)物數(shù)據(jù)集和預(yù)處理圖像(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/193.md)
TensorFlow 中的 VGG16(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/194.md)
使用 TensorFlow 中預(yù)訓(xùn)練的 VGG16 進(jìn)行圖像分類(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/195.md)
TensorFlow 中的圖像預(yù)處理,用于預(yù)訓(xùn)練的 VGG16(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/196.md)
使用 TensorFlow 中的再訓(xùn)練的 VGG16 進(jìn)行圖像分類(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/197.md)
Keras 的 VGG16(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/198.md)
使用 Keras 中預(yù)訓(xùn)練的 VGG16 進(jìn)行圖像分類(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/199.md)
使用 Keras 中再訓(xùn)練的 VGG16 進(jìn)行圖像分類(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/200.md)
TensorFlow 中的 Inception v3(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/201.md)
使用 TensorFlow 中的 Inception v3 進(jìn)行圖像分類(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/202.md)
使用 TensorFlow 中的再訓(xùn)練的 Inception v3 進(jìn)行圖像分類(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/203.md)
總結(jié)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/204.md)
深度強(qiáng)化學(xué)習(xí)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/205.md)
OpenAI Gym 101(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/206.md)
將簡(jiǎn)單的策略應(yīng)用于 cartpole 游戲(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/207.md)
強(qiáng)化學(xué)習(xí) 101(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/208.md)
Q 函數(shù)(在模型不可用時(shí)學(xué)習(xí)優(yōu)化)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/209.md)
RL 算法的探索與開發(fā)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/210.md)
V 函數(shù)(模型可用時(shí)學(xué)習(xí)優(yōu)化)(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/211.md)
強(qiáng)化學(xué)習(xí)技巧(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/212.md)
強(qiáng)化學(xué)習(xí)的樸素神經(jīng)網(wǎng)絡(luò)策略(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/213.md)
實(shí)現(xiàn) Q-Learning(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/214.md)
Q-Learning 的初始化和離散化(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/215.md)
使用 Q-Table 進(jìn)行 Q-Learning(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/216.md)
Q-Network 或深 Q 網(wǎng)絡(luò)(DQN)的 Q-Learning(https://gitee.com/it-ebooks/dsai-trans-proj/blob/master/mastering-tf-1x-zh/217.md)