就 一三角形面積公式 之證明

有
cos2B+sin2B=cos2A+sin2A
即
cos2B-sin2B+2sin2B
=
2sin2A+cos2A-sin2A
即
cos2B-sin2B-cos2A+sin2A
=
2sin2A-2sin2B
即
cos(2B)-cos(2A)
/
2
=
sin2A-sin2B
即
sin(A+B)sin(A-B)=sin2A-sin2B
即
sinCsin(A-B)=sin2A-sin2B
即
S
=
(absinC·sinCsin(A-B))
/
2(sin2A-sin2B)
即
S
=
(abc2sin(A-B))
/
2(a2-b2)
即
1=(a2-b2)2S/(abc2sin(A-B))
即
S
=
(a2-b2)2S2/(abc2sin(A-B))
即
S
=
(a2-b2)2S/(bc)·2S/(ac)/(2sin(A-B))
即
S
=
(a2-b2)sinAsinB/(2sin(A-B))
得證
標(biāo)簽: