PyTorch Tutorial 17 - Saving and Load...

教程Python代碼如下:
import torch
import torch.nn as nn
# 定義卷積神經(jīng)網(wǎng)絡(luò)模型
class ConvNet(nn.Module):
??def __init__(self):
????super(ConvNet, self).__init__()
????self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
????self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
????self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
????self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
????self.fc1 = nn.Linear(64 * 28 * 28, 512)
????self.fc2 = nn.Linear(512, 5)
????self.dropout = nn.Dropout(0.5)
??def forward(self, x):
????x = self.pool(nn.functional.relu(self.conv1(x)))
????x = self.pool(nn.functional.relu(self.conv2(x)))
????x = self.pool(nn.functional.relu(self.conv3(x)))
????x = x.view(-1, 64 * 28 * 28)
????x = self.dropout(nn.functional.relu(self.fc1(x)))
????x = self.fc2(x)
????return x
PATH = "./CNN_Model/Model_73.pth"
"""
load_model = ConvNet()
load_model.load_state_dict(torch.load(PATH))
load_model.eval()
for param in load_model.parameters():
??print(param)
"""
#Load on GPU
device = torch.device("cuda")
load_model = ConvNet()
load_model.load_state_dict(torch.load(PATH, map_location=device))
for param in load_model.parameters():
??print(param)