最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

傅里葉變換||數(shù)學(xué)物理方法

2021-02-14 21:32 作者:湮滅的末影狐  | 我要投稿

//其實(shí)傅里葉級(jí)數(shù)在3Blue1Brown的視頻里面已經(jīng)有比較詳細(xì)的介紹,但為了保證文集的完整性,這一篇筆記還是發(fā)表出來(lái)。

5.1 傅里葉級(jí)數(shù)

沒(méi)有周期函數(shù):f(x%2B2l)%3Df(x)

取三角函數(shù)族:

1%2C%5C%3B%5Ccos%5Cfrac%7B%5Cpi%20x%7D%7Bl%7D%2C%5C%3B%5Ccos%5Cfrac%7B2%5Cpi%20x%7D%7Bl%7D%2C...%2C%5Ccos%5Cfrac%7Bk%5Cpi%20x%7D%7Bl%7D%2C...%5C%5C%0A0%2C%5C%3B%5Csin%5Cfrac%7B%5Cpi%20x%7D%7Bl%7D%2C%5C%3B%5Csin%5Cfrac%7B2%5Cpi%20x%7D%7Bl%7D%2C...%2C%5Csin%5Cfrac%7Bk%5Cpi%20x%7D%7Bl%7D%2C...

則該三角函數(shù)族正交:該函數(shù)族的任意兩不同函數(shù)在一周期的積分為0.

%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20%5Csin%20mx%20%5Ccos%20nx%20%5Cmathrm%20d%20x%3D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20%5Ccos%20mx%20%5Ccos%20nx%20%5Cmathrm%20d%20x%5C%5C%3D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20%5Csin%20mx%20%5Csin%20nx%20%5Cmathrm%20d%20x%3D0%5C%3B%5C%3B(m%2Cn%5Cin%20%5Cmathbb%20N%5E%2B%20%2C%20m%5Cneq%20n)

f(x)展開(kāi)為級(jí)數(shù):

f(x)%3Da_0%2B%5Csum_%7Bk%3D1%7D%5E%5Cinfty(a_k%5Ccos%5Cfrac%7Bk%5Cpi%20x%7D%7Bl%7D%2Bb_k%5Csin%5Cfrac%7Bk%5Cpi%20x%7D%7Bl%7D)

則根據(jù)函數(shù)族的正交性,有

%5Cint_%7B-l%7D%5El%20f(x)%20%5Ccos%20%5Cfrac%7Bk%5Cpi%20x%7D%7Bl%7D%20%5Cmathrm%20d%20x%3D%5Cint_%7B-l%7D%5El%20a_k%5Ccos%5E2%20%5Cfrac%7Bk%5Cpi%20x%7D%7Bl%7D%20%5Cmathrm%20d%20x%3Da_kl%20%5C%3B(k%5Cneq0)

%5Cint_%7B-l%7D%5El%20f(x)%20%5Csin%20%5Cfrac%7Bk%5Cpi%20x%7D%7Bl%7D%20%5Cmathrm%20d%20x%3D%5Cint_%7B-l%7D%5El%20b_k%5Csin%5E2%20%5Cfrac%7Bk%5Cpi%20x%7D%7Bl%7D%20%5Cmathrm%20d%20x%3Db_kl

從而可以求出a_k%2Cb_k.?

%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D%0Aa_%7Bk%7D%3D%5Cfrac%7B1%7D%7B%20l%7D%20%5Cint_%7B-l%7D%5E%7Bl%7D%20f(%5Cxi)%20%5Ccos%20%5Cfrac%7Bk%20%5Cpi%20%5Cxi%7D%7Bl%7D%20%5Cmathrm%7B~d%7D%20%5Cxi%20%5C%5C%0Ab_%7Bk%7D%3D%5Cfrac%7B1%7D%7Bl%7D%20%5Cint_%7B-l%7D%5E%7Bl%7D%20f(%5Cxi)%20%5Csin%20%5Cfrac%7Bk%20%5Cpi%20%5Cxi%7D%7Bl%7D%20%5Cmathrm%7B~d%7D%20%5Cxi%0A%5Cend%7Barray%7D%5Cright.

特別地,

a_0%3D%5Cfrac%7B%5Cint_%7B-l%7D%5Elf(x)%5Cmathrm%20d%20x%7D%7B2l%7D

可以證明,這里的三角函數(shù)族是完備的:

%5Cforall%20f(x)連續(xù),n%5Crightarrow%5Cinfty,

%5Cint_%7B-l%7D%5E%7Bl%7D%5Bf(x)%5D%5E%7B2%7D%20%5Cmathrm%7B~d%7D%20x%3D%5Csum_%7Bk%3D0%7D%5E%7B%5Cinfty%7D%20a_%7Bk%7D%5E%7B2%7D%5Cleft%5B%5Ccos%20%5Cfrac%7Bk%20%5Cpi%20x%7D%7Bl%7D%5Cright%5D%5E%7B2%7D%2B%5Csum_%7Bk%3D1%7D%5E%7B%5Cinfty%7D%20b_%7Bk%7D%5E%7B2%7D%5Cleft%5B%5Csin%20%5Cfrac%7Bk%20%5Cpi%20x%7D%7Bl%7D%5Cright%5D%5E%7B2%7D

滿足上式,稱上述三角函數(shù)族完備,上式稱為完備性方程,稱級(jí)數(shù)平均收斂f(x).

狄里希利定理:若函數(shù)在每一周期內(nèi)除有限個(gè)第一類間斷點(diǎn)外處處連續(xù),且只有有限個(gè)極值點(diǎn),則前述傅里葉級(jí)數(shù)收斂,且在間斷點(diǎn)有

a_0%2B%5Csum_%7Bk%3D1%7D%5E%5Cinfty(a_k%5Ccos%5Cfrac%7Bk%5Cpi%20x%7D%7Bl%7D%2Bb_k%5Csin%5Cfrac%7Bk%5Cpi%20x%7D%7Bl%7D)%3D%5Cfrac12%5Bf(x%2B0)%2Bf(x-0)%5D

什么收斂發(fā)散,嚴(yán)格處理起來(lái)真的好麻煩...作為物理人,我們只關(guān)心:能用就行...

對(duì)于奇函數(shù),傅里葉級(jí)數(shù)只有正弦項(xiàng);偶函數(shù)則只有余弦項(xiàng)。

傅里葉級(jí)數(shù)有復(fù)數(shù)形式。

f(z)%3D%5Csum_%7Bk%3D-%5Cinfty%7D%5E%5Cinfty%20c_k%20e%5E%7B%5Cmathrm%20i%20%5Cfrac%7Bk%5Cpi%20x%7D%7Bl%7D%7D

關(guān)于函數(shù)族的討論,與前面類似。本來(lái)復(fù)指數(shù)和三角函數(shù)的本質(zhì)就是一樣的。

在我的教材里面,求系數(shù)的公式是

c_k%3D%5Cfrac%7B1%7D%7B2l%7D%5Cint_%7B-l%7D%5El%20f(%5Cxi)%5Be%5E%7B%5Cmathrm%20i%5Cfrac%7Bk%5Cpi%20%5Cxi%7D%7Bl%7D%7D%5D%5E*%5Cmathrm%20d%20%5Cxi

但是我比較習(xí)慣的形式是

c_k%3D%5Cfrac%7B1%7D%7B2l%7D%5Cint_%7B-l%7D%5El%20f(%5Cxi)e%5E%7B-%5Cmathrm%20i%5Cfrac%7Bk%5Cpi%20%5Cxi%7D%7Bl%7D%7D%5Cmathrm%20d%20%5Cxi

本質(zhì)上是一樣的。

5.2 傅里葉積分與傅里葉變換

定義在%5Cmathbb%20R的函數(shù)如果不是周期性的,就不能展開(kāi)為傅里葉級(jí)數(shù),但可以考慮它是周期為2l的函數(shù)g(x)l%20%5Crightarrow%20%5Cinfty的結(jié)果。

g(x)%3Da_0%2B%5Csum_%7Bk%3D1%7D%5E%5Cinfty(a_k%5Ccos%5Cfrac%7Bk%5Cpi%20x%7D%7Bl%7D%2Bb_k%5Csin%5Cfrac%7Bk%5Cpi%20x%7D%7Bl%7D)

%5Comega_k%3D%5Cfrac%7Bk%5Cpi%7D%7Bl%7D%2C%5C%3B%5CDelta%5Comega%3D%5Cfrac%7B%5Cpi%7D%7Bl%7D,則有

g(x)%3Da_0%2B%5Csum_%7Bk%3D1%7D%5E%5Cinfty(a_k%5Ccos%5Comega_k%20x%2Bb_k%5Csin%5Comega_k%20x)

其中,

%0A%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D%0Aa_%7Bk%7D%3D%5Cfrac%7B1%7D%7Bl%7D%20%5Cint_%7B-l%7D%5E%7Bl%7D%20f(%5Cxi)%20%5Ccos%20%5Comega_k%20%5Cxi%20%5Cmathrm%7B~d%7D%20%5Cxi%20%5C%5C%0Ab_%7Bk%7D%3D%5Cfrac%7B1%7D%7Bl%7D%20%5Cint_%7B-l%7D%5E%7Bl%7D%20f(%5Cxi)%20%5Csin%20%5Comega_k%20%5Cxi%20%5Cmathrm%7B~d%7D%20%5Cxi%0A%5Cend%7Barray%7D%5Cright.

l%5Crightarrow%5Cinfty,則%5CDelta%5Comega%5Crightarrow%5Cmathrm%20d%20%5Comega%2C%5C%3B%20%5Comega_k變?yōu)檫B續(xù)參量,以上各式取極限即

%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D%0AA(%5Comega)%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%20%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20f(%5Cxi)%20%5Ccos%20%5Comega%20%5Cxi%20%5Cmathrm%7Bd%7D%20%5Cxi%20%5C%5C%0AB(%5Comega)%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%20%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20f(%5Cxi)%20%5Csin%20%5Comega%20%5Cxi%20%5Cmathrm%7Bd%7D%20%5Cxi%0A%5Cend%7Barray%7D%5Cright.(*)

f(x)%3D%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%20A(%5Comega)%20%5Ccos%20%5Comega%20x%20%5Cmathrm%7B~d%7D%20%5Comega%2B%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%20B(%5Comega)%20%5Csin%20%5Comega%20x%20%5Cmathrm%7B~d%7D%20%5Comega

上式稱為傅里葉積分,而(*)式稱為f(x)傅里葉變換式

利用輔助角公式,上式還可以寫成:

f(x)%3D%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%20C(%5Comega)%20%5Ccos%20%5B%5Comega%20x-%5Cphi(%5Comega)%5D%20%5Cmathrm%7B~d%7D%20%5Comega

C(%5Comega)為振幅譜,%5Cphi(%5Comega)為相位譜。

以上只是形式結(jié)果,嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)理論有:

教材摘錄

當(dāng)分類討論f(x)的奇偶性時(shí),甚至可以反復(fù)橫跳:

教材摘錄

傅里葉積分有復(fù)數(shù)形式。

f(x)%3D%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20F(%5Comega)%20e%5E%7Bi%20%5Comega%20x%7D%20d%20%5Comega

F(%5Comega)%3D%5Cfrac%7B1%7D%7B2%5Cpi%7D%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20f(x)%20e%5E%7B-%5Cmathrm%20i%20%5Comega%20x%7D%20%5Cmathrm%20d%20x

可以寫為對(duì)稱形式:

f(x)%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20F(%5Comega)%20e%5E%7Bi%20%5Comega%20x%7D%20d%20%5Comega

F(%5Comega)%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20f(x)%20e%5E%7B-%5Cmathrm%20i%20%5Comega%20x%7D%20%5Cmathrm%20d%20x

并簡(jiǎn)記為:

F(%5Comega)%3D%5Cmathscr%20F%5Bf(x)%5D%2C%5C%3Bf(x)%3D%5Cmathscr%20F%5E%7B-1%7D%5BF(%5Comega)%5D

f(x)稱為原函數(shù),F(%5Comega)稱為像函數(shù)。

傅里葉變換具有如下基本性質(zhì):

%5Cmathscr%20F%5Bf'(x)%5D%3D%5Cmathrm%20i%5Comega%20F(%5Comega)

%5Cmathscr%20F%5Cleft%5B%5Cint%5E%7B(x)%7Df(%5Cxi)%5Cmathrm%20d%5Cxi%5Cright%5D%3D%5Cfrac%7BF(%5Comega)%7D%7B%5Cmathrm%20i%20%5Comega%7D

%5Cmathscr%20F%5Bf(ax)%5D%3D%5Cfrac%7B1%7D%7Ba%7DF(%5Cfrac%7B%5Comega%7D%7Ba%7D)

%5Cmathscr%20F%5Bf(x-x_0)%5D%3DF(%5Comega)e%5E%7B-%5Cmathrm%20i%5Comega%20x_0%7D

%5Cmathscr%20F%5Bf(x)%20e%5E%7B%5Cmathrm%20i%5Comega_0%20x%7D%5D%3DF(%5Comega-%5Comega_0)

%5Cmathscr%20F%5Bf_1(x)*f_2(x)%5D%3D2%5Cpi%20F_1(%5Comega)F_2(%5Comega)

其中f_%7B1%7D(x)%20*%20f_%7B2%7D(x)%3D%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20f_%7B1%7D(%5Cxi)%20f_%7B2%7D(x-%5Cxi)%20%5Cmathrm%7Bd%7D%20%5Cxi稱為函數(shù)f_1%2Cf_2的卷積。

關(guān)于這一系列的定理,可能主要是卷積不太好懂...后面找個(gè)機(jī)會(huì)專門研究一下卷積...

多重傅里葉積分:

對(duì)于n維情況f(x_1%2Cx_2%2C...%2Cx_n),引入矢量%5Cvec%20k%20%3D%20(k_1%2Ck_2%2C...%2Ck_n)則可以有

f(%5Cvec%20r)%3D%5Ciiint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20F(%5Cvec%20k)e%5E%7B%5Cmathrm%20i%5Cvec%20k%20%5Ccdot%20%5Cvec%20r%7D%20%5Cmathrm%20d%20%5Cvec%20r

F(%5Cvec%20k)%3D%5Cfrac%7B1%7D%7B(2%5Cpi)%5E3%7D%5Ciiint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20f(%5Cvec%20r)e%5E%7B-%5Cmathrm%20i%5Cvec%20k%20%5Ccdot%20%5Cvec%20r%7D%20%5Cmathrm%20d%20%5Cvec%20k

這里因?yàn)槲⒎?、積分運(yùn)算都是線性的,就可以簡(jiǎn)單推廣。矢量%5Cvec%20k(好像)就是我們平時(shí)見(jiàn)到的波矢。

5.3?%5Cdelta?函數(shù)

%5Cdelta函數(shù)是一種廣義函數(shù),用于描述質(zhì)點(diǎn)、點(diǎn)電荷、瞬時(shí)沖量等理想模型,其定義如下:

%5Cdelta(x)%3D%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bc%7D%0A0%2C%5C%3Bx%5Cneq0%5C%5C%0A%5Cinfty%2C%5C%3Bx%3D0%0A%5Cend%7Barray%7D%5Cright.,

%5Cint_a%5Eb%5Cdelta(x)%5Cmathrm%20dx%3D%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D%0A0%2C%5C%3Bab%3E0%5C%5C%0A1%2C%5C%3Ba%3C0%3Cb%0A%5Cend%7Barray%7D%5Cright.

%5Cdelta函數(shù)是偶函數(shù),其原函數(shù)是階躍函數(shù):

H(x)%3D%5Cint_%7B-%5Cinfty%7D%5Ex%5Cdelta(x)%5Cmathrm%20dx%3D%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bc%7D%0A0%2C%5C%3Bx%3C0%5C%5C%0A1%2C%5C%3Bx%3E0%0A%5Cend%7Barray%7D%5Cright.

它還有被稱為“挑選性”的性質(zhì):對(duì)任意定義在%5Cmathbb%20R的連續(xù)函數(shù)f(%5Ctau),

%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20f(%5Ctau)%20%5Cdelta%5Cleft(%5Ctau-t_%7B0%7D%5Cright)%20%5Cmathrm%7Bd%7D%20%5Ctau%3Df%5Cleft(t_%7B0%7D%5Cright)

其實(shí)對(duì)于%5Cdelta函數(shù)我的另一種理解是:它是一種概率密度函數(shù),描述的是隨機(jī)變量x必為0的情況(所以其實(shí)根本不隨機(jī))。顯然它滿足歸一化,且所有非0的值取到的概率都為0.

所以這個(gè)挑選性就很好理解了:求f(%5Ctau)的期望,而%5Ctau必為t_0,那么結(jié)果就很顯然是f(t_0)了。

%5Cdelta函數(shù)的傅里葉變換?

(這一段看得有一點(diǎn)點(diǎn)懵,改日再補(bǔ)上)

參考文獻(xiàn)

[1] 梁昆淼. 數(shù)學(xué)物理方法(第四版)[M]. 北京:高等教育出版社,2009.8,69~82.

傅里葉變換||數(shù)學(xué)物理方法的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
澳门| 万载县| 溧水县| 鄂伦春自治旗| 清水县| 盱眙县| 临安市| SHOW| 普陀区| 黔西| 齐齐哈尔市| 康定县| 景东| 广灵县| 榆社县| 庆元县| 深泽县| 张家口市| 南漳县| 印江| 肥西县| 拉孜县| 天全县| 上虞市| 江川县| 东海县| 通江县| 含山县| 毕节市| 永清县| 金昌市| 泗水县| 安多县| 偏关县| 固阳县| 赤壁市| 深水埗区| 阿瓦提县| 长宁区| 卢龙县| 房产|