【電力系統(tǒng)】考慮經(jīng)濟(jì)性的儲(chǔ)能運(yùn)行優(yōu)化附matlab代碼
?作者簡(jiǎn)介:熱愛(ài)科研的Matlab仿真開(kāi)發(fā)者,修心和技術(shù)同步精進(jìn),matlab項(xiàng)目合作可私信。
??個(gè)人主頁(yè):Matlab科研工作室
??個(gè)人信條:格物致知。
更多Matlab完整代碼及仿真定制內(nèi)容點(diǎn)擊??
智能優(yōu)化算法 ? ? ? 神經(jīng)網(wǎng)絡(luò)預(yù)測(cè) ? ? ? 雷達(dá)通信 ? ? ?無(wú)線(xiàn)傳感器 ? ? ? ?電力系統(tǒng)
信號(hào)處理 ? ? ? ? ? ? ?圖像處理 ? ? ? ? ? ? ? 路徑規(guī)劃 ? ? ? 元胞自動(dòng)機(jī) ? ? ? ?無(wú)人機(jī)
?? 內(nèi)容介紹
在當(dāng)今全球能源轉(zhuǎn)型的背景下,電力系統(tǒng)的可持續(xù)發(fā)展成為了各國(guó)政府和能源公司的重要議題。為了實(shí)現(xiàn)可再生能源的大規(guī)模應(yīng)用,儲(chǔ)能技術(shù)被廣泛認(rèn)為是解決電力系統(tǒng)不穩(wěn)定性和間歇性的有效手段之一。然而,儲(chǔ)能系統(tǒng)的運(yùn)行優(yōu)化對(duì)于實(shí)現(xiàn)電力系統(tǒng)的經(jīng)濟(jì)性至關(guān)重要。
儲(chǔ)能系統(tǒng)的運(yùn)行優(yōu)化涉及到多個(gè)方面,包括儲(chǔ)能設(shè)備的調(diào)度、能量管理策略的制定以及市場(chǎng)機(jī)制的設(shè)計(jì)等。在電力系統(tǒng)中,儲(chǔ)能設(shè)備可以通過(guò)儲(chǔ)能和釋放能量來(lái)平衡電力供需之間的差異,從而提高系統(tǒng)的穩(wěn)定性和靈活性。然而,儲(chǔ)能設(shè)備的運(yùn)行成本較高,因此如何在滿(mǎn)足電力需求的同時(shí)降低儲(chǔ)能系統(tǒng)的運(yùn)行成本成為了一個(gè)重要的問(wèn)題。
為了實(shí)現(xiàn)儲(chǔ)能系統(tǒng)的經(jīng)濟(jì)性,需要制定合理的能量管理策略。能量管理策略可以通過(guò)優(yōu)化儲(chǔ)能設(shè)備的充放電策略來(lái)實(shí)現(xiàn)對(duì)電力系統(tǒng)的經(jīng)濟(jì)調(diào)度。例如,在電力需求高峰期,儲(chǔ)能設(shè)備可以通過(guò)釋放儲(chǔ)存的能量來(lái)滿(mǎn)足電力需求,從而避免了高成本的燃煤發(fā)電機(jī)組的運(yùn)行。而在電力需求低谷期,儲(chǔ)能設(shè)備可以通過(guò)充電來(lái)儲(chǔ)存廉價(jià)的電力,以備不時(shí)之需。通過(guò)合理的能量管理策略,可以實(shí)現(xiàn)儲(chǔ)能系統(tǒng)的最優(yōu)運(yùn)行,從而降低系統(tǒng)的運(yùn)行成本。
除了能量管理策略,市場(chǎng)機(jī)制的設(shè)計(jì)也對(duì)儲(chǔ)能系統(tǒng)的經(jīng)濟(jì)性起到了關(guān)鍵作用。在傳統(tǒng)的電力市場(chǎng)中,儲(chǔ)能設(shè)備的參與度較低,因此其經(jīng)濟(jì)效益無(wú)法得到充分發(fā)揮。為了解決這個(gè)問(wèn)題,一些國(guó)家和地區(qū)開(kāi)始探索新的市場(chǎng)機(jī)制,例如引入儲(chǔ)能容量市場(chǎng)和靈活性市場(chǎng)。儲(chǔ)能容量市場(chǎng)可以通過(guò)向儲(chǔ)能設(shè)備提供資金獎(jiǎng)勵(lì)來(lái)鼓勵(lì)其提供備用容量,從而提高儲(chǔ)能設(shè)備的經(jīng)濟(jì)效益。而靈活性市場(chǎng)可以通過(guò)向儲(chǔ)能設(shè)備提供靈活性服務(wù)的獎(jiǎng)勵(lì)來(lái)鼓勵(lì)其參與市場(chǎng)交易,從而提高儲(chǔ)能系統(tǒng)的經(jīng)濟(jì)性。通過(guò)合理的市場(chǎng)機(jī)制設(shè)計(jì),可以激勵(lì)儲(chǔ)能設(shè)備的參與度,從而提高系統(tǒng)的經(jīng)濟(jì)性。
總之,儲(chǔ)能系統(tǒng)的運(yùn)行優(yōu)化對(duì)于實(shí)現(xiàn)電力系統(tǒng)的經(jīng)濟(jì)性至關(guān)重要。通過(guò)制定合理的能量管理策略和設(shè)計(jì)合理的市場(chǎng)機(jī)制,可以實(shí)現(xiàn)儲(chǔ)能系統(tǒng)的經(jīng)濟(jì)調(diào)度和參與度,從而降低系統(tǒng)的運(yùn)行成本。在未來(lái)的能源轉(zhuǎn)型中,儲(chǔ)能系統(tǒng)將扮演著越來(lái)越重要的角色,為電力系統(tǒng)的可持續(xù)發(fā)展做出貢獻(xiàn)。
?? 部分代碼
%%%%%%%%% the signal components are crossing %%%%%%%%%%%%%%
% this example is adopted from paper:Chen S, Peng Z, Yang Y, et al, Intrinsic chirp component decomposition by using Fourier Series representation, Signal Processing, 2017.
clc
clear
close all
SampFreq = 100;
t = 0:1/SampFreq:15;
Sig1 = cos(2*pi*(0.23+15*t + 0.2*t.^2));
IF1 = 15 + 0.4*t;
amp2 = 0.5*cos(2*pi*0.3*t)+1;
Sig2 = amp2.*cos(2*pi*(5*sin(pi/4*t) +5*t + 1.2*t.^2 ));
IF2 = 5*pi/4*cos(pi*t/4) + 2.4*t + 5;
Sig3 = cos(2*pi*(0.35+35*t - 0.8*t.^2));
IF3 = 35 - 1.6*t;
Sig = Sig1 + Sig2 + Sig3;
figure
set(gcf,'Position',[20 100 320 250]); ? ? ?
set(gcf,'Color','w');
plot(t,Sig);
xlabel('Time / Sec','FontSize',12,'FontName','Times New Roman');
ylabel('Amplitude','FontSize',12,'FontName','Times New Roman');
set(gca,'FontSize',12)
set(gca,'linewidth',1);
%% STFT
window = 128;
Nfrebin = 1024;
figure
[Spec,f] = STFT(Sig',SampFreq,Nfrebin,window);
imagesc(t,f,abs(Spec));
axis([0 15 0 50]);
set(gcf,'Position',[20 100 320 250]); ?
xlabel('Time / Sec','FontSize',12,'FontName','Times New Roman');
ylabel('Frequency / Hz','FontSize',12,'FontName','Times New Roman');
set(gca,'YDir','normal')
set(gca,'FontSize',12);
set(gcf,'Color','w'); ?
%% ridge extraction and smoothing
bw = SampFreq/80;% the bandwidth of the TF filter for ridge extraction
beta1 = 1e-4; % beta1 should be larger than the following beta
num = 3; % the number of the components
delta = 20;
[fidexmult, tfdv] = extridge_mult(Sig, SampFreq, num, delta, beta1,bw,Nfrebin,window);
figure
set(gcf,'Position',[20 100 640 500]); ? ? ?
set(gcf,'Color','w');
plot(t,f(fidexmult),'linewidth',3); % detected ridge curves
xlabel('Time / Sec','FontSize',24,'FontName','Times New Roman');
ylabel('Frequency / Hz','FontSize',24,'FontName','Times New Roman');
set(gca,'FontSize',24)
set(gca,'linewidth',2);
axis([0 15 0 50]);
%% ridge path regrouping (RPRG)
% the RPRG algorithm is developed to extract ridge curves of crossed signal modes
% more details about the RPRG can be found in paper: Chen S, Dong X, Xing G, et al, Separation of Overlapped Non-Stationary Signals by Ridge Path Regrouping and Intrinsic Chirp Component Decomposition, IEEE Sensors Journal, 2017.
thrf = length(f)/30;
[findex,interset] = RPRG(fidexmult,thrf);
figure
set(gcf,'Position',[20 100 640 500]); ? ? ?
set(gcf,'Color','w');
plot(t,f(findex),'linewidth',3);
xlabel('Time / Sec','FontSize',24,'FontName','Times New Roman');
ylabel('Frequency / Hz','FontSize',24,'FontName','Times New Roman');
set(gca,'FontSize',24)
set(gca,'linewidth',2);
axis([0 15 0 50]);
%% parameter setting
alpha = 1e-5;
beta = 1e-5; % this parameter can be smaller which will be helpful for the convergence, but it may cannot properly track fast varying IFs
iniIF = curvesmooth(f(findex),beta); % the initial guess for the IFs by ridge detection; the initial IFs should be smooth and thus we smooth the detected ridges
var = 0;% noise variance
tol = 1e-8;%
tic
[IFmset IA smset] = VNCMD(Sig,SampFreq,iniIF,alpha,beta,var,tol);
toc
figure
set(gcf,'Position',[20 100 640 500]); ? ? ?
set(gcf,'Color','w');
plot(t,iniIF(:,:),'linewidth',3); % initial IFs
xlabel('Time / Sec','FontSize',24,'FontName','Times New Roman');
ylabel('Frequency / Hz','FontSize',24,'FontName','Times New Roman');
set(gca,'FontSize',24)
set(gca,'linewidth',2);
axis([0 15 0 50]);
%% Relative errors of the initial IFs
? iniRE1 = ?norm(iniIF(1,:)-IF1)/norm(IF1)
? iniRE2 = ?norm(iniIF(2,:)-IF2)/norm(IF2)
? iniRE3 = ?norm(iniIF(3,:)-IF3)/norm(IF3)
%% estimated IF
figure
plot(t,[IF1;IF2;IF3],'b','linewidth',3) % true IFs
hold on
plot(t,IFmset(:,:,end),'r','linewidth',3) % finally estimated IFs
set(gcf,'Position',[20 100 640 500]); ?
xlabel('Time / Sec','FontSize',24,'FontName','Times New Roman');
ylabel('Frequency / Hz','FontSize',24,'FontName','Times New Roman');
set(gca,'YDir','normal')
set(gca,'FontSize',24);
set(gca,'linewidth',2);
set(gcf,'Color','w'); ?
axis([0 15 0 50])
%% Relative errors of the finally estimated IFs
? RE1 = ?norm(IFmset(1,:,end)-IF1)/norm(IF1) % one can find that the accuracy of the finally estimated IFs is significantly improved compared with the initial IFs
? RE2 = ?norm(IFmset(2,:,end)-IF2)/norm(IF2)
? RE3 = ?norm(IFmset(3,:,end)-IF3)/norm(IF3)
%% Reconstructed modes
figure
set(gcf,'Position',[20 100 640 200]); ? ? ?
set(gcf,'Color','w');
plot(t,smset(1,:,end),'linewidth',2) ?% estimated mode
hold on
plot(t,Sig1 - smset(1,:,end),'k','linewidth',2) ?% estimation errors
hold on
plot(t,IA(1,:),'r','linewidth',3) % estimated IAs
xlabel('Time / Sec','FontSize',24,'FontName','Times New Roman');
ylabel('m1','FontSize',24,'FontName','Times New Roman');set(gca,'YDir','normal')
set(gca,'FontSize',24);
set(gca,'linewidth',2); ?
axis([0 15 -1.5 1.5])
figure
set(gcf,'Position',[20 100 640 200]); ? ? ?
set(gcf,'Color','w');
plot(t,smset(2,:,end),'linewidth',2) ?% estimated mode
hold on
plot(t,Sig2 - smset(2,:,end),'k','linewidth',2) ?% estimation errors
hold on
plot(t,IA(2,:),'r','linewidth',3) % estimated IAs
xlabel('Time / Sec','FontSize',24,'FontName','Times New Roman');
ylabel('m2','FontSize',24,'FontName','Times New Roman');set(gca,'YDir','normal')
set(gca,'FontSize',24);
set(gca,'linewidth',2); ?
axis([0 15 -2 2])
figure
set(gcf,'Position',[20 100 640 200]); ? ? ?
set(gcf,'Color','w');
plot(t,smset(3,:,end),'linewidth',2) ?% estimated mode
hold on
plot(t,Sig3 - smset(3,:,end),'k','linewidth',2) ?% estimation errors
hold on
plot(t,IA(3,:),'r','linewidth',3) % estimated IAs
xlabel('Time / Sec','FontSize',24,'FontName','Times New Roman');
ylabel('m3','FontSize',24,'FontName','Times New Roman');set(gca,'YDir','normal')
set(gca,'FontSize',24);
set(gca,'linewidth',2); ?
axis([0 15 -1.5 1.5])
?? 運(yùn)行結(jié)果

?? 參考文獻(xiàn)
[1] 王穎.面向復(fù)雜不確定性的電力系統(tǒng)運(yùn)行優(yōu)化研究[D].東南大學(xué),2018.
[2] 邱再森.儲(chǔ)能規(guī)劃及不同運(yùn)行模式下經(jīng)濟(jì)性研究[D].鄭州大學(xué)[2023-10-12].DOI:CNKI:CDMD:2.1018.109662.