最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

形式Dirichlet級(jí)數(shù)

2022-01-18 20:48 作者:子瞻Louis  | 我要投稿

已收錄至:《雜文集》

積性數(shù)論中有一個(gè)十分重要的工具——Dirichlet級(jí)數(shù)(也叫Dirichlet生成函數(shù)),它通常是為以下形式:

%5Cmathcal%20D(s%2Cf)%3A%3DF(s)%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7Bf(n)%7D%7Bn%5Es%7D

本期并不會(huì)過深入的研究,而是只指出它的有關(guān)數(shù)論函數(shù)的一些代數(shù)性質(zhì)

f(n)%3D1(n)%5Cequiv1,就可以得到著名的zeta函數(shù):

%5Cmathcal%20D(s%2C1)%3D%5Czeta(s)%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac1%7Bn%5Es%7D

Euler乘積公式

先從一個(gè)著名的乘積開始:(%5CRe(s)%3E1

%5Czeta(s)%3D%5Cprod_p%5Cleft(1-%5Cfrac1%7Bp%5Es%7D%5Cright)%5E%7B-1%7D

該公式可以以下廣義的結(jié)論

f(n)是積性函數(shù)且%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20f(n)絕對(duì)收斂,則

  • %5Csum_%7Bn%3D1%7D%5E%5Cinfty%20f(n)%3D%5Cprod_p(1%2Bf(p)%2Bf(p%5E2)%2B%E2%80%A6)

?因?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=f(n)" alt="f(n)">是積性函數(shù),所以f(1)%3D1,根據(jù)算術(shù)基本定理可將每個(gè)n唯一分解為若干素?cái)?shù)的乘積,當(dāng)n遍歷所有整數(shù)時(shí),分解出的乘積素?cái)?shù)將遍歷所有素?cái)?shù),這里就簡單驗(yàn)證下:

%5Cprod_%7Bp%5Cle%20N%7D(1%2Bf(p)%2Bf(p%5E2)%2B%E2%80%A6)%3D%5Csum_%7Bn%3D1%7D%5EN%20f(n)%2BR(N)

其中%7CR(N)%7C%5Cle%5Cleft%7C%5Csum_%7Bn%3EN%7Df(n)%5Cright%7C%5Cle%5Csum_%7Bn%3EN%7D%7Cf(n)%7C

因?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20f(n)" alt="%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20f(n)">絕對(duì)收斂,所以當(dāng)N%5Crightarrow%5Cinfty時(shí)R(N)%5Crightarrow0

因此該公式成立?

特別地,若f(n)是完全積性函數(shù),則

  • %5Csum_%7Bn%3D1%7D%5E%5Cinfty%20f(n)%3D%5Cprod_p(1-f(p))%5E%7B-1%7D

顯然可以由幾何級(jí)數(shù)直接推出

因此在上訴公式中取f(n)%3D%5Cfrac1%7Bn%5Es%7D可得

%5Czeta(s)%3D%5Cprod_p%5Cleft(1-%5Cfrac1%7Bp%5Es%7D%5Cright)%5E%7B-1%7D

在上式中令s%5Crightarrow1,因?yàn)橛覀?cè)是發(fā)散的,所以右側(cè)也是發(fā)散的,即右側(cè)必須有無窮項(xiàng),由此便可得著名的Euclid定理——素?cái)?shù)有無窮多個(gè)

幾個(gè)有用的性質(zhì):

設(shè)%5Cmathbb%20A是所有數(shù)論函數(shù)的集合,顯然有

  • %5Cmathcal%20D(s%2Cf%2Bg)%3D%5Cmathcal%20D(s%2Cf)%2B%5Cmathcal%20D(s%2Cg)%2Cf%2Cg%5Cin%5Cmathbb%20A

  • %5Cmathcal%20D(s%2Ckf)%3Dk%5Cmathcal%20D(s%2Cf)%2Ck%5Cin%20%5Cmathbb%20C%2Cf%5Cin%5Cmathbb%20A

*表示Dirichlet卷積,有

%5Cbegin%7Baligned%7D%5Cmathcal%20D(s%2Cf)%5Cmathcal%20D(s%2Cg)%26%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7Bf(n)%7D%7Bn%5Es%7D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7Bg(n)%7D%7Bn%5Es%7D%5C%5C%26%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Csum_%7Bm%3D1%7D%5E%5Cinfty%5Cfrac%7Bf(n)g(m)%7D%7B(mn)%5Es%7D%5Cend%7Baligned%7D

作代換k%3Dmn,可得

%5Cbegin%7Baligned%7D%5Cmathcal%20D(s%2Cf)%5Cmathcal%20D(s%2Cg)%26%3D%5Csum_%7Bk%3D1%7D%5E%5Cinfty%5Cfrac%7B1%7D%7Bk%5Es%7D%5Csum_%7Bk%3Dmn%7Df(n)g(m)%5C%5C%26%3D%5Csum_%7Bk%3D1%7D%5E%5Cinfty%5Cfrac%7Bf*g(k)%7D%7Bk%5Es%7D%5Cend%7Baligned%7D

  • %5CRightarrow%20%5Cmathcal%20D(s%2Cf)%5Cmathcal%20D(s%2Cg)%3D%5Cmathcal%20D(s%2Cf*g)

%5Ctilde%7Bf%7D%20(n)表示f(n)的Mobius變換,則有

%5Cmathcal%20D(s%2C%5Ctilde%7Bf%7D)%3D%5Czeta(s)%5Cmathcal%20D(s%2Cf)

一個(gè)應(yīng)用

取mobius函數(shù)%5Cmu(n),根據(jù)廣義Euler乘積公式

%5Cmathcal%20D(s%2C%5Cmu)%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B%5Cmu(n)%7D%7Bn%5Es%7D%3D%5Cprod_p%5Cleft(1%2B%5Cfrac%7B%5Cmu(p)%7D%7Bp%5Es%7D%2B%5Cfrac%7B%5Cmu(p%5E2)%7D%7Bp%5E%7B2s%7D%7D%2B%E2%80%A6%5Cright)%3D%5Cprod_p%5Cleft(1-%5Cfrac1%7Bp%5Es%7D%5Cright)

因此,可以得到

%5Cmathcal%20D(s%2C%5Cmu)%3D%5Cfrac1%7B%5Czeta(s)%7D

再根據(jù)Dirichlet級(jí)數(shù)乘積性質(zhì),就再次推出了Mobius反演公式,又有

1%3D%5Cmathcal%20D(s%2C%5Cvarepsilon)

其中%5Cvarepsilon(n)是單位示性函數(shù),因此也可得1與Mobius函數(shù)的Dirichlet關(guān)系

再從zeta函數(shù)出發(fā),對(duì)它取一階導(dǎo)數(shù),可得

%5Czeta'(s)%3D-%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B%5Clog%20n%7D%7Bn%5Es%7D%3D-%5Cmathcal%20D(s%2C%5Clog)

進(jìn)一步,若取k階導(dǎo)數(shù),有

%5Cfrac%7B%5Cmathrm%20d%5Ek%7D%7B%5Cmathrm%20ds%5Ek%7D%5Czeta(s)%3D(-1)%5Ek%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B%5Clog%5Ek%20n%7D%7Bn%5Es%7D%3D(-1)%5Ek%5Cmathcal%20D(s%2C%5Clog%5Ek)

對(duì)zeta函數(shù)的Euler乘積取對(duì)數(shù)

%5Cbegin%7Baligned%7D%5Cln%5Czeta(s)%26%3D-%5Csum_p%5Cln%5Cleft(1-%5Cfrac1%7Bp%5Es%7D%5Cright)%5C%5C%26%3D%5Csum_p%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac1%7Bnp%5E%7Bsn%7D%7D%5Cend%7Baligned%7D

再取導(dǎo)數(shù),得到

%5Cfrac%7B%5Czeta'%7D%7B%5Czeta%7D(s)%3D-%5Csum_p%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B%5Clog%20n%7D%7Bp%5E%7Bsn%7D%7D

這里以%5Cfrac%20%7Bf'%7Df(s)表示%5Cfrac%7Bf'(s)%7D%7Bf(s)%7D

注意到此和式實(shí)際上就是遍歷所有素?cái)?shù)的乘方,因此可以利用Von mangoldt函數(shù)將它改寫為

%5Cfrac%7B%5Czeta'%7D%7B%5Czeta%7D(s)%3D-%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B%5CLambda(n)%7D%7Bn%5Es%7D%3D-%5Cmathcal%20D(s%2C%5CLambda)

由此及乘積性質(zhì)可以建立Von?mangoldt函數(shù)與自然對(duì)數(shù)間的Mobius變換關(guān)系

  • %5Csum_%7Bd%7Cn%7D%5CLambda(d)%3D%5Clog%20n

Selberg等式

關(guān)于該等式,利用Dirichlet級(jí)數(shù)可以給出一個(gè)十分簡潔的證明,有

%5Cfrac%7B%5Czeta'%7D%7B%5Czeta%7D(s)%3D-%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B%5CLambda(n)%7D%7Bn%5Es%7D%3D-%5Cmathcal%20D(s%2C%5CLambda)

對(duì)它取個(gè)導(dǎo)數(shù)吧

%5Cfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20ds%7D%5Cfrac%7B%5Czeta'%7D%7B%5Czeta%7D(s)%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B%5CLambda(n)%5Clog%20n%7D%7Bn%5Es%7D%3D%5Cmathcal%20D(s%2C%5CLambda%5Ccdot%5Clog)

而又有

%5Cfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20ds%7D%5Cfrac%7B%5Czeta'%7D%7B%5Czeta%7D(s)%3D%5Cfrac%7B%5Czeta''%7D%7B%5Czeta%7D(s)-%5Cleft(%5Cfrac%7B%5Czeta'%7D%7B%5Czeta%7D(s)%5Cright)%5E2

%5CRightarrow%20%5Cmathcal%20D(s%2C%5CLambda%5Ccdot%5Clog)%3D%5Cmathcal%20D(s%2C%5Clog%5E2)%5Cmathcal%20D(s%2C%5Cmu)-%5Cmathcal%20D%5E2(s%2C%5CLambda)

%5CRightarrow%5Cmathcal%20D(s%2C%5CLambda%5Ccdot%5Clog)%3D%5Cmathcal%20D(s%2C%5Clog%5E2%5Ccirc%5Cmu-%5CLambda%5Ccirc%5CLambda)

  • %5CLambda(n)%5Clog%20n%3D%5Csum_%7Bd%7Cn%7D%5Cmu%5Cleft(%5Cfrac%20nd%5Cright)%5Clog%5E2d-%5Csum_%7Bd%7Cn%7D%5CLambda(d)%5CLambda%5Cleft(%5Cfrac%20nd%5Cright)

雜燴

不妨試試把一些數(shù)論函數(shù)揉進(jìn)Dirichlet級(jí)數(shù)里:

(以下%5Comega(n)表示n的不同素因子個(gè)數(shù),%5COmega(n)表示所有素因子個(gè)數(shù),%5Comega(1)%3D%5COmega(1)%3D0

  1. 由于d(n)%3D%5Csum_%7Bd%7Cn%7D1%3D1*1(n),因此

    %5Cmathcal%20D(s%2Cd)%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7Bd(n)%7D%7Bn%5Es%7D%3D%5Czeta%5E2(s)

  2. 更進(jìn)一步,根據(jù)Dirichlet卷積的另一種定義,有

    %5Cunderbrace%7B1*1*%E2%80%A6*1%7D_%7Bk%E4%B8%AA%7D%3D%5Csum_%7Bn%3Da_1a_2%E2%80%A6a_k%7D1

    右式可以看做將n分解為k個(gè)數(shù)相乘的方法種數(shù),

    設(shè)%5Ctau_k(n)%3D%5Csum_%7Bn%3Da_1a_2%E2%80%A6a_k%7D1

    %5Cbegin%7Baligned%7D%5CRightarrow%20%5Cmathcal%20D(s%2C%5Ctau_k)%26%3D%5Cmathcal%20D(s%2C%5Cunderbrace%7B1*1*%E2%80%A6*1%7D_%7Bk%E4%B8%AA%7D)%5C%5C%26%3D%5Cmathcal%20D%5Ek(s%2C1)%3D%5Czeta%5Ek(s)%5Cend%7Baligned%7D

  3. 還用另一種方式推廣:設(shè)

    %5Csigma_k(n)%3D%5Csum_%7Bd%7Cn%7Dd%5Ek%3D1*%5Cmathrm%20%7Bid%7D%5Ek(n)

    %5CRightarrow%20%5Cmathcal%20D(s%2C%5Csigma_k)%3D%5Czeta(s)%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7Bn%5Ek%7D%7Bn%5Es%7D%3D%5Czeta(s)%5Czeta(s-k)

  4. 根據(jù)Mobius函數(shù)的性質(zhì),Euler函數(shù)

    %5Cvarphi(n)%3Dn%5Cprod_%7Bp%7Cn%7D%5Cleft(1-%5Cfrac1p%5Cright)%3D%5Csum_%7Bd%7Cn%7D%5Cmu(d)%5Ccdot%5Cfrac%20nd%3D%5Cmu*%5Cmathrm%20%7Bid%7D(n)

    因此,其Dirichlet生成函數(shù)為:

    %5Cmathcal%20D(s%2C%5Cvarphi)%3D%5Cfrac1%7B%5Czeta(s)%7D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7Bn%7D%7Bn%5Es%7D%3D%5Cfrac%7B%5Czeta(s-1)%7D%7B%5Czeta(s)%7D

    再由zeta函數(shù)在偶數(shù)處的值,我們得到一個(gè)形式上的zeta函數(shù)在奇數(shù)處的公式:

    %5Czeta(2n-1)%3D(-1)%5E%7Bn%2B1%7D%5Cfrac%7BB_%7B2n%7D(2%5Cpi)%5E%7B2n%7D%7D%7B2(2n)!%7D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B%5Cvarphi(n)%7D%7Bn%5Es%7D

    這個(gè)公式并不能用來計(jì)算在奇數(shù)處的值,也就是說它其實(shí)沒啥鳥用(

  5. 因Mobius函數(shù)僅在n無平方因子時(shí)不為零且絕對(duì)值都是1,因此取它的絕對(duì)值或平方即可表示對(duì)無平方因子整數(shù)的示性函數(shù)

    %5Cmu%5E2(n)%3D%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Brcl%7D%0A1%20%2C%26%20%5Cnexists%20p%2Cp%5E2%7Cn%20%5C%5C%200%2C%20%20%26%20%5Ctext%7Botherwise%7D%0A%5Cend%7Barray%7D%5Cright.

    Mobius函數(shù)是積性的,因此其平方也是積性,將它揉進(jìn)Dirichlet級(jí)數(shù)里并利用Euler乘積:

    %5Cbegin%7Baligned%7D%5Cmathcal%20D(s%2C%5Cmu%5E2)%26%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B%5Cmu%5E2(n)%7D%7Bn%5Es%7D%5C%5C%26%3D%5Cprod_p%5Cleft(1%2B%5Cfrac%7B%5Cmu%5E2(p)%7D%7Bp%5Es%7D%2B%5Cfrac%7B%5Cmu%5E2(p%5E2)%7D%7Bp%5E%7B2s%7D%7D%E2%80%A6%5Cright)%5C%5C%26%3D%5Cprod_p%5Cleft(1%2B%5Cfrac1%7Bp%5Es%7D%5Cright)%5C%5C%26%3D%5Cprod_p%5Cfrac%7B%5Cleft(1%2B%5Cfrac1%7Bp%5Es%7D%5Cright)%5Cleft(1-%5Cfrac1%7Bp%5Es%7D%5Cright)%7D%7B%5Cleft(1-%5Cfrac1%7Bp%5Es%7D%5Cright)%7D%5C%5C%26%3D%5Cprod_p%5Cfrac%7B%5Cleft(1-%5Cfrac1%7Bp%5E%7B2s%7D%7D%5Cright)%5E%7B-1%7D%7D%7B%5Cleft(1-%5Cfrac1%7Bp%5E%7Bs%7D%7D%5Cright)%5E%7B-1%7D%7D%5Cend%7Baligned%7D

    %5CRightarrow%20%5Cmathcal%20D(s%2C%5Cmu%5E2)%3D%5Cfrac%7B%5Czeta(2s)%7D%7B%5Czeta(s)%7D

  6. 引入Liouville函數(shù)%5Clambda(n)%3D(-1)%5E%7B%5COmega(n)%7D

    %5Cforall%20m%2Cn%5Cin%5Cmathbb%20N%2C%5COmega(mn)%3D%5COmega(m)%2B%5COmega(n)%5CRightarrow%20%5Clambda(mn)%3D%5Clambda(m)%5Clambda(n)

    于是Liouville函數(shù)是完全積性的,因此利用Euler乘積,

    %5Cbegin%7Baligned%7D%5Cmathcal%20D(s%2C%5Clambda)%26%3D%5Cprod_p%5Cleft(1-%5Cfrac%7B%5Clambda(p)%7D%7Bp%5Es%7D%5Cright)%5E%7B-1%7D%5C%5C%26%3D%5Cprod_p%5Cleft(1%2B%5Cfrac1%7Bp%5Es%7D%5Cright)%5E%7B-1%7D%5Cend%7Baligned%7D

    于是如法炮制地得到

    %5Cmathcal%20D(s%2C%5Clambda)%3D%5Cfrac%7B%5Czeta(2s)%7D%7B%5Czeta(s)%7D%3D%5Cfrac1%7B%5Cmathcal%20D(s%2C%5Cmu%5E2)%7D

    因此Liouville函數(shù)與Mobius函數(shù)的平方是互為Dirichlet逆的

  7. %5Czeta(2s)%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B1%7D%7Bn%5E%7B2s%7D%7D

    注意到該和式只有正整數(shù)的平方參與,因此可以設(shè)

    %5Ctext%7Bsqrt%7D(n)%3D%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Brcl%7D%0A1%20%2C%26%20%5Cexists%20m%5Cin%5Cmathbb%20N%2Cn%3Dm%5E2%20%5C%5C%200%2C%20%20%26%20%5Ctext%7Botherwise%7D%0A%5Cend%7Barray%7D%5Cright.

    則在其絕對(duì)收斂的情況下,

    %5Czeta(2s)%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B%5Ctext%7Bsqrt%7D(n)%7D%7Bn%5Es%7D

  8. 由omega函數(shù)的定義可知

    %5Comega(n)%3D%5Csum_%7Bp%7Cn%7D1%3D1*%5Cmathrm%20p(n)

    其中%5Cmathrm%20p(n)%3D%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Brcl%7D%0A1%20%2C%26%20n%5Cin%20%5Cmathbb%20P%20%5C%5C%200%2C%20%20%26%20n%5Cnotin%5Cmathbb%20P%0A%5Cend%7Barray%7D%5Cright.為素?cái)?shù)的示性函數(shù)

    %5Cmathcal%20D(s%2C%5Comega)%3D%5Czeta(s)%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B%5Cmathrm%20p(n)%7D%7Bn%5Es%7D%3D%5Czeta(s)%5Csum_p%5Cfrac1%7Bp%5Es%7D

本期內(nèi)容氵到這就差不多結(jié)束了


形式Dirichlet級(jí)數(shù)的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國家法律
曲麻莱县| 瑞昌市| 乌兰浩特市| 虹口区| 同江市| 呼和浩特市| 上林县| 百色市| 邵阳市| 金寨县| 北辰区| 仁布县| 醴陵市| 阜阳市| 太原市| 曲麻莱县| 大洼县| 南投县| 广德县| 廉江市| 马鞍山市| 灌阳县| 萍乡市| 夹江县| 闽清县| 曲阜市| 清苑县| 福泉市| 中阳县| 宁南县| 南汇区| 仙桃市| 台中市| 屏南县| 平和县| 莒南县| 西昌市| 乌恰县| 翁牛特旗| 广汉市| 云南省|