最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

復(fù)旦大學(xué)謝啟鴻老師高等代數(shù)在線習(xí)題課 思考題分析與解 ep.45

2022-02-01 19:52 作者:CharlesMa0606  | 我要投稿

本文內(nèi)容主要有關(guān)于Cayley-Hamilton定理的應(yīng)用,在高代白皮書上對應(yīng)第6.2.3節(jié)

題目來自于復(fù)旦大學(xué)謝啟鴻教授在本站高等代數(shù)習(xí)題課的課后思考題,本文僅供學(xué)習(xí)交流

習(xí)題課視頻鏈接:復(fù)旦大學(xué)謝啟鴻高等代數(shù)習(xí)題課_嗶哩嗶哩_bilibili

本人解題水平有限,可能會有錯誤,懇請斧正!

祝大家新年快樂!?

練習(xí)題1(16級高代II每周一題第3題)? 設(shè)A_1%2CA_2%2C%5Ccdots%2CA_m為n階方陣,g%5Cleft(x%5Cright)%5Cin%20K%5Cleft%5Bx%5Cright%5D,使得g%5Cleft(A_1%5Cright)%2Cg%5Cleft(A_2%5Cright)%2C%5Ccdots%2Cg%5Cleft(A_m%5Cright)都是非異陣.證明:存在h%5Cleft(x%5Cright)%5Cin%20K%5Cleft%5Bx%5Cright%5D,使得g%5Cleft(A_i%5Cright)%5E%7B-1%7D%3Dh%5Cleft(A_i%5Cright)%5Cleft(1%5Cle%20i%5Cle%20m%5Cright).

證明? 注意到g%5Cleft(A_i%5Cright)都是非異陣,取A_i的任一特征值為%5Clambda,則g%5Cleft(%5Clambda%5Cright)都不為零.設(shè)分塊對角陣A%3Ddiag%5C%7BA_1%2C%5Ccdots%2CA_m%5C%7D的特征多項式為

f%5Cleft(%5Clambda%5Cright)%3D%5Cleft%7C%5Clambda%20I_%7Bmn%7D-A%5Cright%7C%3D%5Cleft%7C%5Clambda%20I_n-A_1%5Cright%7C%5Ccdots%5Cleft%7C%5Clambda%20I_n-A_m%5Cright%7C%5C%5C%3D%5Cprod_%7Bi%3D1%7D%5E%7Bm%7D%7Bf_i%5Cleft(%5Clambda%5Cright)%7D%5Cin%20K%5Cleft%5Bx%5Cright%5D%2Cg%5Cleft(%5Clambda%5Cright)%3D%5Cleft(%5Clambda-x_1%5Cright)%5Ccdots%5Cleft(%5Clambda-x_k%5Cright)%2Cx_i%5Cin%20C

從而f%5Cleft(x%5Cright)%2Cg%5Cleft(x%5Cright)互素,因此存在u%5Cleft(x%5Cright)%2Cv%5Cleft(x%5Cright)%5Cin%20K%5Cleft%5Bx%5Cright%5D%2Cs.t.f%5Cleft(x%5Cright)u%5Cleft(x%5Cright)%2Bg%5Cleft(x%5Cright)v%5Cleft(x%5Cright)%3D1,代入A_i,由Cayley-Hamilton定理可知f%5Cleft(A_i%5Cright)%3D0%2Cg%5Cleft(A_i%5Cright)v%5Cleft(A_i%5Cright)%3DI_n,這即是要找的h%5Cleft(x%5Cright)%5Cin%20K%5Cleft%5Bx%5Cright%5D,使得g%5Cleft(A_i%5Cright)%5E%7B-1%7D%3Dh%5Cleft(A_i%5Cright)%5Cleft(1%5Cle%20i%5Cle%20m%5Cright).

%5BQ.E.D%5D

練習(xí)題2(15級高代II每周一題第4題) 設(shè)n階方陣A適合多項式f%5Cleft(x%5Cright)%3Da_mx%5Em%2Ba_%7Bm-1%7Dx%5E%7Bm-1%7D%2B%5Ccdots%2Ba_1x%2Ba_0,其中%5Cleft%7Ca_m%5Cright%7C%3E%5Csum_%7Bi%3D0%7D%5E%7Bm-1%7D%5Cleft%7Ca_i%5Cright%7C.證明:矩陣方程2X%2BAX%3DXA%5E2只有零解.

證明? 首先證明多項式方程f%5Cleft(x%5Cright)%3D0的根的模長一定小于1,用反證法,設(shè)x_0%5Cgeq1并且f%5Cleft(x_0%5Cright)%3D0,則%5Cleft%7Ca_m%5Cright%7C%3D%5Cfrac%7B1%7D%7Bx_0%5Em%7D%5Cleft%7Ca_%7Bm-1%7D%7Bx_0%7D%5E%7Bm-1%7D%2B%5Ccdots%2Ba_1x_0%2Ba_0%5Cright%7C%5Cle%5Csum_%7Bi%3D0%7D%5E%7Bm-1%7D%5Cleft%7Ca_i%5Cright%7C,矛盾.

注意到A適合多項式f%5Cleft(x%5Cright),從而A的特征值適合多項式f%5Cleft(x%5Cright),于是A的特征值的模長小于1.

考慮%5Cleft(A%2B2%5Cright)X%3DXA%5E2,A%2B2的特征值模長大于1,而A%5E2的特征值的模長小于1,從而二者不可能有相同特征值,這就說明矩陣方程2X%2BAX%3DXA%5E2只有零解.

%5BQ.E.D%5D

練習(xí)題3(14級高代II期中考試第七大題)? 設(shè)n階實矩陣A的所有特征值都是正實數(shù),證明:對任一實對稱陣C,存在唯一的實對稱陣B,滿足A%5E%5Cprime%20B%2BBA%3DC.

證明? 考慮A%5E%5Cprime%20B-B%5Cleft(-A%5Cright)%3DC,因為A的所有特征值都是正實數(shù),所以A%5E%5Cprime的特征值全為正實數(shù),并且A與A'必定沒有公共特征值.從而方程存在唯一解.

%5BQ.E.D%5D

? 最近參加專欄的活動要求字數(shù),所以我將練習(xí)題解答直接寫出,最后附上圖片格式的解答


復(fù)旦大學(xué)謝啟鴻老師高等代數(shù)在線習(xí)題課 思考題分析與解 ep.45的評論 (共 條)

分享到微博請遵守國家法律
余江县| 绥德县| 上虞市| 赤壁市| 策勒县| 黎城县| 曲麻莱县| 邢台县| 江达县| 梁平县| 邓州市| 庆安县| 台南市| 高安市| 徐水县| 高雄县| 中山市| 临江市| 疏附县| 兖州市| 涞水县| 庄河市| 尼玛县| 万载县| 无棣县| 科尔| 泰顺县| 宣威市| 承德县| 长沙县| 元氏县| 濮阳市| 甘泉县| 密云县| 峡江县| 米易县| 泾源县| 泗洪县| 团风县| 调兵山市| 宁远县|