最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

2023數(shù)分Day58(傅里葉級數(shù)1:求展開式一)

2023-07-25 20:20 作者:看036  | 我要投稿

一、整體感受

不難,總體考察兩點,一是求Fourier級數(shù)展開式;二是再求一個和

二、需要掌握以及復(fù)習(xí)的

(其中3、4主要是理解清楚再去記憶公式,通過充分理解奇函數(shù)、偶函數(shù)的性質(zhì),如奇*奇=偶,偶*偶=偶來記憶;周期為2π情況下an后面跟的是cosnx,bn后面跟的是sinnx

1、傅里葉系數(shù)和傅里葉級數(shù)概念

2、傅里葉級數(shù)的收斂性(狄利克雷收斂定理)及一道例題

【這也是后續(xù)可以求展開式的關(guān)鍵,其中定理中的第一類簡單點定義需要再復(fù)習(xí)(即可去間斷點+跳躍間斷點)】

【例題】

【第一類間斷點定義】

3、周期為2π的函數(shù)的展開

①:[-π,π]上展開

②:[-π,π]上奇偶函數(shù)的展開

③:[0,π]上展開為正弦或展為余弦

4、周期為2l的函數(shù)的展開

①:[-l,l]上展開

②:[-l,l]上奇偶函數(shù)的展開

①:[0,l]上展開為正弦或展為余弦

5、對于分奇偶的討論,n=2k(偶),n=2k-1(奇),k=1,2,3....,看清楚、寫清楚即可

6、分部積分一定要掌握,很多題都要算兩次分部積分

三、具體題目

1(北京科技大學(xué))

①關(guān)注到f(x)是偶函數(shù),周期為2π,選擇相應(yīng)公式

【類型屬于本專欄二、3、②】

②由于是偶函數(shù),因此bn=0

③算a0,an

④檢驗一下f(x),發(fā)現(xiàn)滿足可以使用收斂定理的條件(連續(xù)+有限個單調(diào)區(qū)間),寫出來這個傅里葉級數(shù)

⑤把x=0代入,再利用要求的級數(shù)的分母可以寫成分母分別為奇次項和偶次項相加,最后分母4拿出來,便可得到。

2(新疆大學(xué))

①關(guān)注到f(x)需要延拓,按照題意,展開成余弦級數(shù)(即只出現(xiàn)含有余弦函數(shù)的項),延拓成偶函數(shù)。

【類型屬于本專欄二、3、③】

②因此bn=0

③算a0,an;算an的過程中注意分部積分使用的時候?qū)τ冢▁-π)^2千萬不要展開做,不讓計算會變麻煩!

④觀察一下f(x),發(fā)現(xiàn)滿足可以使用收斂定理的條件(連續(xù)+有限個單調(diào)區(qū)間),寫出傅里葉級數(shù)。

⑤令x=0,f(0)=limf(x)=π^2(x→0+),因此得到結(jié)論。

3(南京航空航天)

①關(guān)注到f(x)需要延拓,按照題意,展開成余弦級數(shù)(即只出現(xiàn)含有余弦函數(shù)的項),延拓成偶函數(shù)。

【類型屬于本專欄二、3、③】

②因此bn=0

③算a0,an;

④觀察一下f(x),發(fā)現(xiàn)滿足可以使用收斂定理的條件(連續(xù)+有限個單調(diào)區(qū)間),寫出傅里葉級數(shù)

⑤令x=0,f(0)=limf(x)=1-0^2=1(x→0+),因此得到結(jié)論。


2023數(shù)分Day58(傅里葉級數(shù)1:求展開式一)的評論 (共 條)

分享到微博請遵守國家法律
隆安县| 绵竹市| 洛南县| 长乐市| 涟水县| 苏尼特左旗| 淮滨县| 怀仁县| 华坪县| 天水市| 鹰潭市| 铁岭市| 余干县| 繁峙县| 宁阳县| 彭阳县| 砀山县| 承德县| 伊春市| 临颍县| 龙陵县| 施甸县| 会泽县| 芷江| 深水埗区| 广灵县| 衡东县| 襄城县| 巴彦淖尔市| 临潭县| 盘锦市| 澄江县| 习水县| 平潭县| 揭阳市| 分宜县| 蓝田县| 南和县| 滨海县| 廊坊市| 开化县|