(初一)數(shù)學(xué)題分享




解:xy+yz+xz=(x+y+z)2-(x2+y2+z2)/2=-6
x2y2+y2z2+x2z2=(xy+yz+xz)2-2xyz(x+y+z)=32
則原式=1/-6-yz-xz+2z+1/-6-xy-xz+2z+1/6-xy-yz+2y
=1/-6-z(x+y-2)+1/-6-x(y+z-2)+1/-6-y(x+z-2)
=1/z2-6+1/x2-6+1/y2-6
=(x2-6)(y2-6)+(z2-6)(y2-6)+(x2-6)(z2-6)/(x2-6)(y2-6)(z2-6)
=x2y2+y2z2+x2z2-12(x2+y2+z2)+108/x2y2z2-6(x2y2+y2z2+x2z2)+36(x2+y2+z2)-216
=32-12×16+108/1-6×32+36×16-216
=-4/13

標(biāo)簽: