最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

邏輯學(xué)名詞解釋

2021-01-28 09:32 作者:朝顏晚扶桑  | 我要投稿

1、概念:反映事物特有屬性的思維形式。

單獨(dú)概念:是指僅反映一個特定對象的概念,它的外延是一個獨(dú)一無二的事物。

普遍概念:是指由若干個分子所組成的類的概念。它的外延包括許多的對象。

集合概念:把一類對象作為一個集合體來反映的概念。

非集合概念:不把一類對象作為一個集合體來放映的概念。

正概念:反映對象具有某種屬性的概念。

負(fù)概念:反映對象不具有某種屬性的概念。只有帶否定詞并使用其含義的,才是負(fù)概念。

論域:指一個正概念與其相對的負(fù)概念所反映的對象組成的類。

定義:就是揭示概念內(nèi)涵的邏輯方法。揭示概念所反映的事物的特有屬性的方法。

劃分:揭示概念外延的邏輯方法。就是將外延較大的屬概念根據(jù)一定的標(biāo)準(zhǔn),劃分出若干個外延較小的概念,從而明確概念全部外延的邏輯方法。

概念的限制:通過增加概念的內(nèi)涵,以減少概念的外延的邏輯方法。

即概念的限制就是從屬概念過渡到種概念的邏輯方法。

概念的概括:通過減少概念的內(nèi)涵,以擴(kuò)大其外延的邏輯方法。

命題:陳述事物情況的思維形態(tài)。特征在于其真假性。命題有具體內(nèi)容和邏輯形式,邏輯學(xué)不研究具體命題內(nèi)容上真假,只研究命題形式真假性質(zhì)和命題形式之間的真假關(guān)系。

模態(tài)命題:就是包含“必然”等模態(tài)詞的命題。

復(fù)合命題:就是包含其他命題的命題,包括聯(lián)言命題、選言命題、假言命題和負(fù)命題。

簡單命題:就是沒有包含其他命題的命題,主要包括直言命題和關(guān)系命題。

推理:就是由一或若干個命題推出另一個命題的思維形態(tài)。

直言命題:就是陳述事物具有或不具有某種性質(zhì)的命題。(性質(zhì)命題)

肯定命題:就是陳述事物具有某種性質(zhì)的命題。聯(lián)項一般用“是”表示。

單稱命題:就是陳述一個特定事物具有或不具有某種性質(zhì)的命題。主項專有名詞,不需量詞。

全稱命題:陳述一類事物的全部分子都具有或不具有某種性質(zhì)的命題。主項普遍概念,量省。

特稱命題:就是陳述一類事物中至少存在著一事物具有或不具有某種性質(zhì)的命題。主項普遍概念,量項不可省為“有的、有些”(其邏輯含義就是“有”即至少有一個,不排斥全部)

周延性:是直言命題主項與謂項在量的方面的邏輯特征,是直言命題形式中對主項或謂項的全部外延的陳述情況。在一個直言命題形式中,如果陳述了它的主項或謂項的全部外延,那么其主項或謂項就是周延的。

直言直接推理:就是前提只有一個命題的直言推理。

A:全稱肯定

E:全稱否定

I:特稱坑定

O:特稱否定

反對關(guān)系:A?與?E?之間的關(guān)系是:不能同真,得以同假。即,當(dāng)一個真時,另一個必假;當(dāng)一個假時,另一個真假不定。

矛盾關(guān)系:AO、EI?之間的關(guān)系是:既不能同真也不能同假。即,一個為真時,另一個必假;當(dāng)一個為假時,另一個必真。

等差關(guān)系:AI/EO?之間的真假關(guān)系:全稱真,特稱必真;全稱假,特稱真假不定;特稱假,全稱必假;特稱真,全稱真假不定。

下反對關(guān)系:IO?之間的真假關(guān)系:不能同假,可以同真。即當(dāng)一個假時,另一個必真;當(dāng)一個真時,另一個真假不定。

換質(zhì)法:改變前命題的質(zhì)(把肯定改為否定,或把否定改為肯定)。

換位法:改變前命題的主項和謂項的位置(把前提的主項改為謂項,把謂項改為主項)。

直言間接推理:又稱直言三段論,也可簡稱為三段論。

三段論:就是由包含一個共同項的兩個直言命題為前提,推出一個直言命題為結(jié)論的推理。

三段論的格:就是由于中項所處的位置的不同而構(gòu)成的不同三段論形式。

在三段論的大小前提中,中項可以分別是主項或謂項,這樣,中項在兩個前提中的位置,共有四種不同的情況,相應(yīng)的有四個格。

三段論的省略式:又稱省略三段論。三由大小前提和結(jié)論組成,從邏輯結(jié)構(gòu)上說,這三部分缺一不可。但是人們在運(yùn)用三時,語言表達(dá)上的簡潔,通常采用省略其中一個命題的形式。省略三段論就是省略大前提或小前提或結(jié)論的三段論。

關(guān)系命題:就是陳述事物之間具有某種關(guān)系的命題。

復(fù)合命題:就是包含有其他命題的命題。由肢命題和命題聯(lián)結(jié)詞兩部分構(gòu)成。

真值:“真”和“假”稱為命題的邏輯值,簡稱真值。

真值表:判斷復(fù)合命題的真值情況的專門的圖表。

聯(lián)言命題:陳述幾種事物情況都存在的命題。

聯(lián)言推理:就是前提或結(jié)論是聯(lián)言命題,并根據(jù)聯(lián)言命題的邏輯性質(zhì)來進(jìn)行的推理。

聯(lián)言推理分解式:是以一個連言命題為前提,而推出其中某個聯(lián)言肢作為結(jié)論的推理形式。

聯(lián)言推理合成式:是以幾個命題為前提,推出僅以這幾個命題為聯(lián)言肢的聯(lián)言命題作為結(jié)論的推理形式。

選言命題:陳述幾種事物情況之中至少有一種事物情況存在的命題。肢命題為選言肢,聯(lián)結(jié)詞主要是“或者”一詞。

相容選言命題:就是其選言肢可以同真的選言命題。鏈接詞是“或者”。V?析取式。

不相容選言命題:陳述其選言肢中有并且只有一個選言肢為真的選言命題?!耙矗础盫`嚴(yán)格析取式

相容選言推理:前提中有一個是相容選言命題,并根據(jù)相容選言命題的邏輯性質(zhì)進(jìn)行的推理。

假言命題:又稱條件命題,它是陳述某一種事物情況是另一種事物情況的某種條件的命題。假言聯(lián)結(jié)詞“如果(前件),那么(后件)”或“只有,才”。

充分條件假言命題:其假言聯(lián)結(jié)詞為“如果……,那么……”的假言命題,陳述前件是后件的充分條件。P→q?蘊(yùn)含式。

充分條件:皆有兩個分別為?p,q?的事物情況,如果有?p,就必然有?q,而沒有?p?是否有?q不確定,這樣?P?就是?q?的充分條件。

必要條件假言命題:其假言聯(lián)結(jié)詞為“只有,才”的假言命題。陳述前件是后件的必要條件。P←q?逆蘊(yùn)含式

必要條件:?皆有兩個分別為?p,q?的事物情況,如果沒有?p,就必然沒?q,而有?p?卻未必有q,這樣?P?就是?q?的必要條件。

充分必要條件假言命題:假言聯(lián)結(jié)詞為“當(dāng)且僅當(dāng)”的假言命題。陳述前件是后件的充分必要條件。P??q?等值式

假言易位推理:其前件為一個假言命題,而結(jié)論是將前提的前、后件既互換位置又同取否定的同種的假言命題這樣一種必然性推理。

假言連鎖推理:就是以兩個一上的假言命題為前提,并且根據(jù)條件關(guān)系的傳遞性而推出一個假言命題為結(jié)論的推理。

充分條件假言連鎖推理式:P→q,q→r?所以?p→r

必要條件假言連鎖推理式:p←q,q←r,所以?p←r

二難推理:假言選言推理中的一種。假言選言推理就是由假言命題和選言命題作為前提所構(gòu)成的推理。其中,有兩個充分條件假言命題和一個二肢的選言命題作為前提,并且根據(jù)充分條件假言命題和選言命題的邏輯性質(zhì)進(jìn)行的推理,在傳統(tǒng)邏輯中稱為兒難推理。

駁斥:就是揭露其中隱藏的錯誤。

??“構(gòu)造一個相反的二難推理”的方法:通過構(gòu)造出一個與原二難推理相反的二難推理,并從其中推出相反的結(jié)論,來達(dá)到駁斥原二難推理的目的。

負(fù)命題:就是否定某個命題的命題,它是有命題聯(lián)結(jié)詞“并非”聯(lián)結(jié)一個肢命題而成的。

模態(tài)命題:陳述事物情況的必然性或可能性的命題。其基本特征就是在命題中包含有“必然”“可能”一類模態(tài)詞。(也是狹義的模態(tài)命題,又稱真值模態(tài)命題)

可能世界:指人們能夠合乎邏輯的設(shè)想出來的各種各咋樣的情況或場合,他們在現(xiàn)實當(dāng)中不一定存在,但在邏輯上卻是可能的?,F(xiàn)實世界只是許許多多可能世界中的一個可能世界。非現(xiàn)實的可能世界卻并不意味著另外某個星球或在另外某個物理空間中的世界,它是人們想象的世界,存在于人民的想象之中。

規(guī)范模態(tài)命題:簡稱規(guī)范命題,他陳述的是約束人們行為的某種命令或規(guī)定?;咎卣魇窃诿}中含有“必須”“允許”“禁止”一類的規(guī)范模態(tài)詞(簡稱規(guī)范詞)。由于禁止=必須不,所以規(guī)范詞可以歸結(jié)為:必須和允許。

或然性推理:就是前提和結(jié)論具有或然推出關(guān)系的推理。

回溯推理:又稱溯原推理,就是在已知兩個事物或現(xiàn)象之間具有因果聯(lián)系的基礎(chǔ)上,由結(jié)果推測原因的推理。

不完全歸納推理:也稱簡單枚舉歸納推理。就是根據(jù)一類對象中部分對象具有某屬性,并且沒有遇到反例,從而推出該類對象都具有該屬性的推理。

穆勒五法:探求因果聯(lián)系的方法有求同法、求異法、求同求異并用法、共變法和剩余法。

求同法:又稱契合法。如果被研究的現(xiàn)象出現(xiàn)的若干場合中,其他先行情況都不同,只有一個情況相同,那么,這個唯一相同的情況與被研究的現(xiàn)象之間就有因果聯(lián)系。特點(diǎn)是“異中求同”。

求異法:又稱差異法。如果被研究的現(xiàn)象出想喝不出現(xiàn)的兩個場合中其他現(xiàn)行情況都相同,只有一個情況不同,那么這個唯一不同的情況與被研究的現(xiàn)象之間就有因果聯(lián)系。特點(diǎn)是“同中求異”。

求同求異并用法:又稱并用法。如果在被研究的現(xiàn)象出現(xiàn)的一組正面場合中,都存在一個公共的先行情況,而在被研究的現(xiàn)象不出現(xiàn)的另一組反面場合中,都不存在這個共同的先行情況,那么,這個共同的先行情況與被研究的現(xiàn)象之間就有因果聯(lián)系。特點(diǎn)“兩次求同,一次求異”。

共變法:如果在被研究的現(xiàn)象發(fā)生變化的各個場合中,其他先行情況都不變,只有一個先行情況發(fā)生變化,那么這個唯一發(fā)生變化的先行情況與被研究現(xiàn)象之間就有因果聯(lián)系。特點(diǎn)“同中求變”。

剩余法:如果已知某一復(fù)合現(xiàn)象是另一復(fù)合現(xiàn)象的原因,同時又知前一復(fù)合現(xiàn)象中的某一部分是后一復(fù)合現(xiàn)象中某一部分的原因,那么前一復(fù)合現(xiàn)象中的剩余部分與后一復(fù)合現(xiàn)象中的剩余部分之間就有因果聯(lián)系。特點(diǎn)“從余果求余因”。

類比推理:由兩個(或兩類)對象在某些屬性上相同或相似,從而推出它們在另一個屬性上也相同的推理。

假說:就是根據(jù)已知的事實材料和科學(xué)原理,對未知的事物現(xiàn)象及其規(guī)律性作出假定性解釋的思維形式。

同一律:在同一思維的過程中,任一思維都必須保持自身的同一,不能任意改變。公式是:A?是?A?,或?A→A。(思維的確定性要求概念和命題必須保持自身的同一。)

矛盾律:在同一思維的過程中,兩個互相矛盾的思想不能同真,即對同一事物不能既肯定它是什么,又否定它是什么,其中必有一假。公式:A?不是非?A(思維的確定性要求運(yùn)用命題時前后不能自相矛盾)。

排中律:在同一思維過程中,兩個互相矛盾的思想不能同假,其中必有一真。公式:A或者非?A,或者表示排斥。(思維的確定性要求在兩種互相矛盾的思想中,不能“兩不可”)。

證明:一般包括事實證明(又稱經(jīng)驗證明)和理論證明(又稱邏輯證明)。

事實證明:就是在實踐活動的基礎(chǔ)上根據(jù)確鑿的事實直接確定某命題的事實性的證明。

理論證明:就是用一個或若干個已知為真的命題,通過推理來確定另一個命題真實性的思維過程。

直接證明:就是從真實論據(jù)直接推出論題的證明。特點(diǎn)是從論題出發(fā),為論題的真實性提供正面的理由。

間接證明:就是通過證明與原論題相關(guān)的其他論題為假,從而推出原論題為真的證明。特點(diǎn)是論題的真實性不是從論據(jù)的真直接推出的,而是從其他的假間接推出的。

反證法:通過證明反論題(與原論題具有矛盾關(guān)系或下發(fā)對關(guān)系的命題)為假,從而根據(jù)排中律,推出原論題為真的證明方法。

選言證法:就是通過證明與原命題相關(guān)的其他命題為假,從而推出原命題為真的證明方法。

反駁:一種特殊的證明,即用一個或若干個已知為真的命題來確定另一個命題為假或其證明不能成立的思維過程。

直接反駁:就是根據(jù)一個或一些命題的真實性,直接推出對方命題的虛假性的反駁方法。

獨(dú)立證明法:就是通過證明與對方的命題具有矛盾關(guān)系或反對關(guān)系的命題的真實性,從而根據(jù)矛盾律,確定對方的命題的虛假性的反駁方法。

歸謬法:就是從被反駁命題出發(fā),推出與事理相矛盾的結(jié)論,或推出邏輯矛盾,從而證明被反駁命題虛假的反駁方法。

謬誤:就是指人們在思維活動中,自覺或不自覺的違反思維規(guī)律或規(guī)則而發(fā)生的邏輯錯誤。人們通常把不是故意犯的邏輯錯誤稱為謬誤,而把故意反邏輯規(guī)律或規(guī)則進(jìn)行似是而非的論證稱為詭辯。

命題邏輯:所探究的是其前提與結(jié)論皆有未解析的命題組成的演繹推理。特征在于,研究和考察邏輯形式時,把一個復(fù)合命題只分析到其中所含的簡單命題為止,而不是把一個簡單命題再分析為其主項、謂項及量項等各種成分。

真值函應(yīng):一個函數(shù)如果其自變元所取之值為“真值”,而該函數(shù)本身由此取值為“真值”,則該函數(shù)稱為真值函應(yīng)。

函應(yīng):作為數(shù)學(xué)中函數(shù)關(guān)系在邏輯領(lǐng)域中的推廣和具體運(yùn)用,函數(shù)稱為函應(yīng)(函項),變量稱為變項,而變項所取的值并非是數(shù)值而是真值或假值。

真值蘊(yùn)含涵:相當(dāng)于假言命題中前件與后件間之內(nèi)在關(guān)聯(lián)的真值函應(yīng),稱為真值蘊(yùn)涵。

重言式:對于一個真值函應(yīng),如不論其中的自變項取值真假,而該函應(yīng)之真值為“真”,則該函應(yīng)為重言式,因重言式其值常真,因此亦稱為永真式。

矛盾式:對于一個真值函應(yīng),如不論其中自變項取值真或假,而整個函應(yīng)式之真值為“假”,則該函應(yīng)式為邏輯矛盾式。與重言式相反,邏輯矛盾式的值常假。

公理系統(tǒng):借公理方法,即依據(jù)一些最基本的初始命題(不證自明的公理)按照演繹推理的規(guī)則而推導(dǎo)一系列定理、命題所建構(gòu)的完整的演繹體系,如歐幾里得幾何學(xué)。

任一公理系統(tǒng)所需滿足的條件:相容性(無矛盾一致性)、完備性(完全性)、獨(dú)立性(不可推演性)。

公理:多是基于人類長期反復(fù)實踐的驗證眾所公認(rèn)其真實性,無需其他命題證明而不證自明的命題。

論域:簡言之,即論題的一定范圍,亦即全類,也可表示為“1”。

謂詞演算:將謂詞邏輯的推理形式和規(guī)律組成一個形式化的公理系統(tǒng)即所謂謂詞演算。

謂詞邏輯:就是把簡單命題進(jìn)而分析為其主項、謂項和量項并借以研究命題的形式結(jié)構(gòu)及其推理的規(guī)律與規(guī)則的邏輯演算理論。

主項:命題中表示思維對象的詞項稱為主項(主詞)。

謂項:而將表示對象性質(zhì)或關(guān)系的詞項稱為謂項(謂詞)。

變項:表示某類特定事物中任一個體的項稱為變項。

變項的變程:如果一個變項反映某類事物中的任一個,則該類事物就是這個變項的變程。

量項:命題中表示數(shù)量性質(zhì)的詞項,現(xiàn)代形式邏輯有兩個量項,即全稱量項與存在量項。全稱量項相當(dāng)于自然語言中的“一切”“所有的”“凡”等等;存在量項相當(dāng)于自然語言中的“有的”“有”“至少有一”等等。

量詞的轄域:是量詞所約束的范圍。

重疊量項:有先后次序的量項序列。

普遍有效的公式:不論其中變項取什么值,其結(jié)果總是真的公式。簡稱普效式。

邏輯學(xué)名詞解釋的評論 (共 條)

分享到微博請遵守國家法律
海门市| 滦南县| 玛多县| 马鞍山市| 台东县| 旺苍县| 南乐县| 墨脱县| 合水县| 佛山市| 龙南县| 吴川市| 德清县| 定西市| 齐齐哈尔市| 高青县| 静宁县| 寻甸| 永清县| 阿克| 文水县| 左贡县| 博乐市| 苏尼特右旗| 靖远县| 宜城市| 玉树县| 饶河县| 申扎县| 师宗县| 南昌市| 鄯善县| 上杭县| 安吉县| 新密市| 报价| 尼玛县| 深水埗区| 新疆| 南皮县| 尉氏县|