就 一網(wǎng)友 之所問 之解析


有
AG=1
∠AGC=α+45°
即
AC=ED
=tan(α+45°)
=(1+tanα)/(1-tanα)
且
∠DFE
=4∠ACG
=180°-4α
即
EF
=ED/sin∠DFE
=ED/sin(180°-4α)
DF
=ED/tan∠DFE
=ED/tan(180°-4α)
且
C△DEF=a
即
ED+EF+DF
=ED(1+1/sin(180°-4α)+1/tan(180°-4α))
=ED(1+1/sin4α-1/tan4α)
=ED(1+(1-cos4α)/sin4α)
=ED(1+2sin22α/2sin2αcos2α)
=ED(1+tan2α)
=(1+tanα)/(1-tanα)
(1+2tanα-tan2α)/(1-tan2α)
=(1+2tanα-tan2α)/(1-2tanα+tan2α)
=a
即
(a+1)tan2α-(2a+2)tanα+a-1=0
且
0<α<45°
即
0<tanα<1
即
tanα
=(2a+2)-√(4(a+1)2-4(a2-1))
/(2a+2)
=1-√2/√(a+1)
即
AC
=(1+tanα)/(1-tanα)
=2-√2/√(a+1)
/(√2/√(a+1))
=√(2a+2)-1
ps.
未見答案
僅供參考
標(biāo)簽: