最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

hive

2023-06-09 22:17 作者:alpha-H111  | 我要投稿

共享單車模擬數(shù)據(jù)分析

要求如下

庫名:hongyaa

表名:bike

?

字段:

持續(xù)時(shí)間 duration int,

開始時(shí)間 startdate timestamp,(注意時(shí)間戳在分析中的細(xì)節(jié))

還車時(shí)間 enddate timestamp,

開始地編號 startnum int,

開始地名稱 startstation string,

還車地編號 endnum int,

還車地名稱 endstation string,

自行車編號 bikenum string,

用戶類型 type string,(會員/臨時(shí)會員)

?

?

以上面的字段創(chuàng)建一個(gè)名為bike的表,要求每一列以“制表符”為分割。

(答案為白色字體,下同)

create table bike (duration int,startdate timestamp,enddate timestamp,startnum int,startstation string,endnum int,endstation string,bikenum string,type string)

row format delimited fields terminated by ',';

?

檢查表的字段:desc?bike;(建表是一個(gè)得分點(diǎn),表字段錯了后面全做不了)

導(dǎo)入數(shù)據(jù):load data local inpath '/root/bike.txt' into table bike;

?

啟用本地計(jì)算模式,此舉可縮短計(jì)算時(shí)間,平時(shí)可以對比試試看,比賽時(shí)建議使用

>set hive.exec.mode.local.auto=true;

?


數(shù)據(jù)分析(不分大小寫,回車可過行,結(jié)束加分號)

1.一共調(diào)查了多少輛單車?寫入“/root/test001/“用分號隔開 ??#3191

Insert?overwrite local directory?‘/root/test001/’

Row format delimited?fields?terminated?by?‘;’

select count(distinct(bikenum)) from bike;

?

?

2.?會員在全部受訪者中占比是多少? #0.9

select round((t1.a/t2.b),2) from (select count(*) a from bike where type='Member') t1 join (select count(*) b from bike) t2;

?

另一種方法:分開兩次算,先算會員數(shù)量,再算比例

Select count(*) a

From bike;

?

Select count(*) b?

from bike

where type='Member';

?

Select round((a/b),2);?type=’Member’; #38220

Select (38220/count(*),2) from bike; #0.9

3.用車最多的是哪個(gè)地區(qū)?(以開始地點(diǎn)計(jì)算)#Columbus Circle / Union Station

select startstation,count(*) as a

from bike

group by startstation

order by a desc limit 1;

?

4.騎行時(shí)間最長是多少?的是哪輛車(車號)? #84876226 W23232

select duration,bikenum

from bike

order by duration desc limit 1;

?

5.這些單車平均騎行時(shí)間?(單位毫秒) #785938.47 (ms)

select avg(duration)

from bike;

?

6.這些單車平均騎行時(shí)間?(單位分鐘) #13.10

select avg(duration/60000) //1分鐘等于60000毫秒

from bike;

?

7.一月一日一共有多少輛車在工作? #1570

select count(distinct bikenum)

from bike

where month(startdate)=1 and day(startdate)=1;

?

8.正式會員最少的地區(qū)是哪個(gè)地區(qū)? #6035 Warehouse

select startstation,count(*) a

from bike

where type='Member'

group by startstation

order by a desc limit 1;

?

9.哪一天上班早高峰(6點(diǎn)-9點(diǎn))用車量最大,并計(jì)算該段時(shí)間用車頻次,用制表符分開。

row format delimited fields terminated by '\t'

select day(startdate) as a ,count(*) as b

from bike

where hour(stratedate) in (6,7,8)

group by a

order by b desc limit 1;

?

10.找出騎行時(shí)間最短的車號;w 20752

select min(duration) from bike;

select bikenum from bike

where duration='60777';

?

另一種方法:select bikenum from bike?where duration in (select min(duration) from bike)

11.找出單車騎行時(shí)間大于平均騎行時(shí)間的車號及其騎行時(shí)間,使用','分隔,將結(jié)果保存在'/root/test011'中;

select avg(duration) from bike; 785938

?

insert overwrite local directory '/root/test011'

row format delimited fields terminated by ','

select bikenum,duration

from bike

where duration>'785938' ;

?

12.計(jì)算出在一月8日工作的車輛數(shù),將結(jié)果保存在'/root/test012'中;952

insert overwrite local directory '/root/test012' ??????????????????1920

row format delimited fields terminated by ','

select count(distinct(bikenum))

from bike

where month =’1’?and day(startdate)='8'

?

?

13.找出正式會員最少的地區(qū)中臨時(shí)會員的數(shù)量,使用','分隔,將結(jié)果保存在'/root/test013'中;

select startstation,count(*) a

from bike

where type='Member' group by startstation ?

order by a desc limit 1; //6035 Warehouse

?

insert overwrite local directory '/root/test013'

select count(*) from bike

where type='Casual' and startstation='Warehouse';

?

?

14.找出1月9日下班高峰(17點(diǎn)-20點(diǎn))用車數(shù)最多的地區(qū),用','分隔,降序排序; #1st & M St NE,10

select startstation,count(*) a

from bike

where month=’1’?and day(startdate)='9' and hour(startdate) in (17,18,19,20) group by startstation order by a desc limit 1;???

?

Columbus Circle / Union Station 54


可視化

1.?繪出2017年1月1日到1月6日的用車情況(數(shù)量)折線圖。

標(biāo)題為:”2017年1月1日到1月6日會員與非會員用車情況“

標(biāo)簽依次為會員,非會員

橫坐標(biāo)為1日...6日

以開始時(shí)間為準(zhǔn)

?

select type,count(*) from bike where ?day(startdate)='1' group by type;

Casual 1580

Member 2484

select type,count(*) from bike where ?day(startdate)='2' group by type;

Casual 181

Member 1459

select type,count(*) from bike where ?day(startdate)='3' group by type;

Casual 254

Member 3520

select type,count(*) from bike where ?day(startdate)='4' group by type;

Casual 748

Member 6438

select type,count(*) from bike where ?day(startdate)='5' group by type;

Casual 402

Member 5814

select type,count(*) from bike where ?day(startdate)='6' group by type;

Casual 309

Member 5263

?

???????option = {

????????????title:{

????????????????text:'2017一月1日到一月6日會員與非會員用車情況'

????????????????},

????????????xAxis:{

????????????????type:'category',

????????????????data:['1日','2日','3日','4日','5日','6日']

????????????????},

????????????legend:{

????????????????data:['會員','非會員'],

????????????????x:'right',

????????????????},

????????????yAxis:{

????????????????type:'value',

????????????????},

????????????series:[

????????????????{

????????????????????name:'會員',

????????????????????type:'line',

????????????????????data:[2484,1459,3520,6438,5814,5263]

????????????????},

????????????????{

????????????????????name: '非會員',

????????????????????type: 'line',

????????????????????data: [1580,181,254,748,402,309]

????????????????}]

????????};

?

?

?

?

2.各地會員數(shù)量前3的地區(qū)及數(shù)量和全體用戶類型的雙餅圖

Select startstation,count(*) a

From bike

Where type=’Member’

Group by startstation

Order by a desc limit 3;

?

Select count(*) a

From bike

Where type=’Member’;

?

Select count(*) b

From bike

Where type=’Casual’;

?

Select round((a/b),5);

?

option={

????title:{

????????text:'會員類別及會員數(shù)量前五的地區(qū)比例圖',

????????x:'center'

????},

????tooltip:{

????????trigger:'item',

????????formatter:"{a}<br/>:{c}(s0sssss00s%)"

????},

????legend:{

????????orient:'vertical',

?????????x:'left',

????????data:['Columbus Circle / \nUnion Station','15th & P \nSt NW','Thomas \nCircle','New Hampshire Ave &\n T St NW','Massachusetts Ave &\n Dupont Circle NW']

????},

????series:[

????????{

????????????name:'用戶類別',

????????????type:'pie',

????????????selectdMode:'single',

????????????radius:[0,'30%'],

????????????data:[

????????????????{value:4185,name:'臨時(shí)會員'},

???????????????{value:38220,name:'會員',color:'bule'}

????????????]

????????},

????????{

????????????name:'地區(qū)',

????????????type:'pie',

????????????radius:['40%','55%'],

????????????data:[

????????????????{value:1029,name:'Columbus Circle / \nUnion Station'},

???????????????{value:541,name:'15th & P \nSt NW'},

????????????????{value:535,name:'Thomas \nCircle'},

???????????????{value:527,name:'New Hampshire Ave &\n T St NW'},

????????????????{value:480,name:'Massachusetts Ave &\n Dupont Circle NW'}

????????????????]

????????}

????]

};

?

持續(xù)時(shí)間 duration int,

開始時(shí)間 startdate timestamp,(注意時(shí)間戳在分析中的細(xì)節(jié))

還車時(shí)間 enddate timestamp,

開始地編號 startnum int,

開始地名稱 startstation string,

還車地編號 endnum int,

還車地名稱 endstation string,

自行車編號 bikenum string,

用戶類型 type string,(會員/臨時(shí)會員)

?

3.以地點(diǎn)為橫坐標(biāo),

繪出各地會員數(shù)量前5的地區(qū)及數(shù)量的柱狀圖,

title='會員的數(shù)量TOP5的地區(qū)'

?

?

Select startstation,count(*) a

From bike

Group by startstation

Order by a desc limit 5;

?

Columbus Circle / Union Station 1029

15th & P St NW 541

Thomas Circle 535

New Hampshire Ave & T St NW 527

Massachusetts Ave & Dupont Circle NW 480

?

????????option = {

????????????title:{

????????????????text:'會員數(shù)量前5的地區(qū)及數(shù)量',

????????????????x:'center'

????????????},

????????????color: ['#388599'],

????????????tooltip : {

????????????????trigger: 'axis'

????????????},

????????????grid: {

????????????????left: '0%',

????????????????right: '0%',

????????????????bottom: '0%',

????????????????containLabel: true

????????????},

????????????xAxis : [

????????????????{

????????????????????text:'地區(qū)',

????????????????????type : 'category',

????????????????????data : ['Columbus Circle / \nUnion Station', '15th & \nP St NW',

????????????????????'Thomas\n Circle', 'New Hampshire Ave\n & T St NW',

????????????????????'Massachusetts Ave &\n Dupont Circle NW'],

????????????????????axisTick: {

????????????????????????alignWithLabel: true

????????????????????}

????????????????}

????????????],

????????????yAxis : [

????????????????{

????????????????????type : 'value'

????????????????}

????????????],

????????????series : [

????????????????{

????????????????????name:'單車使用頻次',

????????????????????type:'bar',

????????????????????barWidth: '50%',

????????????????????data:[1029, 541, 535, 527, 480]

????????????????}

????????????]

????????};

?

?

2019智警杯模擬數(shù)據(jù)分析

要求如下

庫名:hongya

表名:final

?

字段:

案件編號 id int,

案件狀態(tài) state string,

案件副類別 class string,

損失金額 loss int,

損失程度 degree string,

作案手法 mode string,

案件來源 source string,

案發(fā)事件上限uppertime timestamp,

案發(fā)事件下限lowertime timestamp,

案發(fā)地點(diǎn) place string,

受理單位 accept_unit string,

受理時(shí)間 accept_time timestamp,

報(bào)案時(shí)間 take_time timestamp,

警員 ?police string,

破案時(shí)間 break_time timestamp

?

?

以上面的字段創(chuàng)建一個(gè)名為final的表,要求每一列以“制表符”為分割。

(答案為白色字體,下同)

create table final(

id int,state string,class string,loss int,

degree string,mode string,source string,

uppertime timestamp,lowertime timestamp,

place string,accept_unit string,

accept_time timestamp,take_time timestamp,

police string,break_time timestamp)

row format delimited fields terminated by '\t';

?

檢查表的字段:desc?final;(建表是一個(gè)得分點(diǎn),表字段錯了后面全做不了)

導(dǎo)入數(shù)據(jù):load data inpath '目錄/xxx.txt' into table final;

?

啟用本地計(jì)算模式,此舉可縮短計(jì)算時(shí)間,平時(shí)可以對比試試看,比賽時(shí)建議使用

>set hive.exec.mode.local.auto=true;

數(shù)據(jù)分析(不分大小寫,回車可過行,結(jié)束加分號)

1.統(tǒng)計(jì)2017年3月份(以發(fā)案時(shí)間為準(zhǔn))的經(jīng)濟(jì)損失總額,將結(jié)果寫入到/root/test001/中,要求使用 “制表符”作為聲明文件分隔符;

insert owerwrite local directory?‘/root/test001/’

row?format delimited fields terminated by ‘\t’

select?sum(loss)

from final

where year(take_time) = 2017 and month(take_time) = 3;

?

?

2.找出經(jīng)濟(jì)損失最多的案件副類別,并給出該案件副類別對應(yīng)的損失總額,將結(jié)果寫入到/root/test002/中,要求使用 “制表符”作為聲明文件分隔符。

Insert overwrite local directory ‘/root/test002/’

Row format delimited fields terminated by ‘\t’

Select class,sum(loss) total

from final

group by class

order by total desc limit?1;

?

?

3.統(tǒng)計(jì)2016年03月份發(fā)生案件總數(shù),將結(jié)果寫入到/root/test003/中,要求使用 “制表符”作為聲明文件分隔符。

Insert overwrite local directory ’/root/test003/’

Row format delimited fields terminated by’\t’

Select count(*) from final where year(tabe_time)=2016 and mouth(take_time)=3;

?

?

4.在損失度為“特別巨大”的案件中,找出發(fā)生頻次最高的案件副類別并統(tǒng)計(jì)其發(fā)生頻次,將結(jié)果寫入到/root/test004/中,要求使用 “制表符”作為聲明文件分隔符.

Insert overwrite local directory ’/root/test004/’

Row format delimited fields terminated by’\t’

Select class,count(*) total

from final

where degree=’特別巨大’

Group by class

order by total desc limit 1;

?

?

5.列出詐騙最高發(fā)的地區(qū)及其對應(yīng)的損失金額TOP3,將結(jié)果寫入到/root/test005/中,要求使用 “制表符”作為聲明文件分隔符;

Insert overwrite local directory ’/root/test005/’

Row format delimited fields terminated by’\t’

Select place,sum(loss) total

from final

where class like ‘%詐騙%’

group by place

order by total limit 3;

?

?

6.“短信詐騙”的發(fā)案時(shí)間平均為多久(即發(fā)案時(shí)間的下限(天)-發(fā)案時(shí)間的上限(天)),將結(jié)果寫入到/root/test006/中,要求使用 “制表符”作為聲明文件分隔符;

DATEDIFF() 函數(shù)返回兩個(gè)日期之間的時(shí)間

語法格式:DATEDIFF(datepart,startdate,enddate)

Insert overwrite local directory ’/root/test006/’

Row format delimited fields terminated by’\t’

Select?int(avg(datadiff(day,lowertime,uppertime)))

from final

Where class = ‘短信詐騙’;

?

?

7.?列出2016年春季的經(jīng)濟(jì)損失總額,將結(jié)果寫入到/root/test007/中,要求使用 “制表符”作為聲明文件分隔符;

Insert overwrite local directory ’/root/test007/’

Row format delimited fields terminated by’\t’

Select?sum(loss) from final

where year(take_time)=2016 and month(take_time)=(1,2,3);

?

8.列出“深夜”時(shí)段受理案件最多的派出所及其受理案件數(shù)目。

(00-07為深夜,08-12為上午,13-19為下午,20-23為晚上)

格式:對于結(jié)果中的二維數(shù)據(jù),要求使用?“制表符”作為聲明文件

分隔符。

復(fù)合排列:按照受理案件數(shù)據(jù)進(jìn)行降序排列;

Row format delimited fields terminated by’\t’

Select accept_unit,count(*) total

from final

where hour(accept_time) in (0,1,2,3,4,5,6,7)

Group by accept_unit

Order by total desc limit 1;

?

9.列出網(wǎng)絡(luò)詐騙中案發(fā)頻次最高的作案手法top5及其對應(yīng)案發(fā)次數(shù);

格式:對于結(jié)果中的二維數(shù)據(jù),要求使用?“制表符”作為聲明文件分隔符。

復(fù)合排列:按照案發(fā)次數(shù)進(jìn)行降序排列;

Select mode,count(*) tatal from final

Where class=’網(wǎng)絡(luò)詐騙’

Group by mode

Order by total desc limit 5;

?

;列出2019年破獲案件總金額最高的接警員(按姓氏)top10及其破獲總金額。

格式:對于結(jié)果中的二維數(shù)據(jù),要求使用“制表符”作為聲明文件分隔符。

復(fù)合排列:按照金額數(shù)目進(jìn)行降序排列;

?

Row format?delimited fields terminated by ‘\t’

Select police,sum(loss) total from final

Where state=’破案’ and year(break_time)=2019

Group by police

Order by total desc limit 10;

?

?

11.統(tǒng)計(jì)在A城案件中的各案件副類別發(fā)生頻次。

格式:對于結(jié)果中的二維數(shù)據(jù),要求使用“制表符”作為聲明文件分隔符。

復(fù)合排列:按照類別頻次進(jìn)行降序排列;

Select class,count(*) total from final

Where take_place?like ’A城%’

Group by class

Order by total desc;

?

12.在損失金額超過18萬的案件中,找出受理案件最多的派出所top5及其對應(yīng)

受理案件數(shù)目。

格式:對于結(jié)果中的二維數(shù)據(jù),要求使用?“制表符”作為聲明文件分隔符。

復(fù)合排列:先按照受理案件數(shù)目進(jìn)行降序排列,再按照派出所名稱升序排列;

?

Select accept_unit,count(*) cases from final

Where loss > 180000

Group by accept_unit

Order by cases desc,accept_unit limit 5;

?

?

13.統(tǒng)計(jì)出C城深夜時(shí)段發(fā)生案件總次數(shù)

?

Select count(*) from final

Where hour(take_time) in (0,1,2,3,4,5,6,7) and place=’C城’;

?

14.統(tǒng)計(jì)出2016年下半年破案數(shù)top10的警察及其破案數(shù)

?

Select?police,count(*) total from final

Where state=’破案’?and year(break_time)=2016 and month(break_time) in (6,7,8,9,10,11,12)

Group by police

Order by total desc limit 10;

?

15.統(tǒng)計(jì)近年來損失程度較大的犯罪案件,顯示年份和數(shù)量和經(jīng)濟(jì)損失,按年份排序

?

Select?year(take_time) as?a,count(*),sum(loss) from final

Where degree=’較大’

Group by a

Order by a;

?

16.統(tǒng)計(jì)所有詐騙手法,次數(shù)及金額

?

Select mode,count(*),sum(loss)

from final

Group by mode;

?

T17.統(tǒng)計(jì)2018年所有城市的破案率,保留兩位小數(shù) 【17,18,19,20有更好的方法(但是我不會。。。)】

?

①Select count(*) from final where year(take_time)=2018 and year(break_time)=2018;

②Select?count(*) from final

where year(take_time)=2018 and year(break_time)=2018 and state=’破案’;

③select round(①/②,2);

?

?

18.2019年發(fā)生最多的案件副類別的破案率?#網(wǎng)絡(luò)詐騙 0.77

select class,count(*) as total from final where year(take_time)=2019 group by class order by total desc limit 1; ???#網(wǎng)絡(luò)詐騙 244

select count(*)/244 from final where year(take_time)=2019 and year(break_time)=2019 and class='網(wǎng)絡(luò)詐騙';

?

?

19.比網(wǎng)絡(luò)詐騙破案率高的案件副類別有什么? #電話詐騙,短信詐騙

select class,count(*) as total from final where state='破案' group by class order by total desc;

select class,count(*) as total from final group by class order by total desc;

select (1258/1688); #0.75

select (163/208); #0.78

select (83/104); #0.80

?

?

?

20.各民警在2017年8月的電信詐騙破案率?

select count(*)?a from final where year(take_time)=2017 and month(take_time)=8 and year(break_time)=2017 and month(break_time)=8?and class=’電信詐騙’;

?

select police,count(*) b from final where year(take_time)=2017 and month(take_time)=8 and year(break_time)=2017 and month(break_time)=8 and police like '%警官'?and class=’電信詐騙’?group by police?order by b;

Select (a/b)

可視化

1.繪出所有案件的損失程度比例圖;(餅圖)

要求:1.圖形類別為餅狀圖;

title=‘案件損失程度比例圖’;

標(biāo)簽legend依次為:較大,巨大,特別巨大

series.name=‘損失程度’;

?

insert overwrite local directory '/root/test101/'

row format delimited fields terminated by '\t'

select count(*) from final;

select round(count(*)/2000,2)*100 from final where degree='較大';#70

select round(count(*)/2000,2)*100 from final where degree='巨大';#22

select round(count(*)/2000,2)*100 from final where degree='特別巨大';#8

?

option = {

? ? title: {

? ? ? ? text: '案件損失程度比例圖',

? ? ? ? x: 'center' //位置居中

? ? },

? ? tooltip: {

? ? ? ? trigger: 'item', //觸發(fā)鍵,把鼠標(biāo)放在圖形上面觸發(fā)

formatter:"{a}<br/>:{c}(s0sssss00s%)"

? ? },

? ? legend: {

? ? ? ? orient: 'vertical', //垂直放圖例

? ? ? ? x: 'left', //圖例放在左邊

data:['較大','巨大','特別巨大']

? ? },

? ? series: [

? ? ? ? {

? ? ? ? ? ? name: '損失程度',

? ? ? ? ? ? type: 'pie',

selectdMode:'single',

? ? ? ? ? ? data: [

? ? ? ? ? ? ? ? {value: 70, name: '較大'},

? ? ? ? ? ? ? ? {value: 22, name: '巨大'},

? ? ? ? ? ? ? ? {value: 8, name: '特別巨大'}

? ? ? ? ? ? ],

? ? ? ? }

? ? ]}

?

?

2.繪出所有案件的作案手法比例圖;(雙餅圖)

要求:

title=’ 案件副類別及作案手法比例圖’;

legend標(biāo)簽依次為'冒充熟人','網(wǎng)絡(luò)貸款','購物釣魚網(wǎng)站

','網(wǎng)絡(luò)購物','銀行卡案件','虛擬物品','涉案轉(zhuǎn)賬','網(wǎng)絡(luò)預(yù)

測彩票';

series.name=‘作案手法’;

圖形類型必須為餅狀圖;

?

insert overwrite local directory '/root/test102/'

row format delimited fields terminated by '\t'

select mode,count(*) from final

group by mode;

?

option = {

? ? title: {

? ? ? ? text: '某站點(diǎn)用戶訪問來源',

? ? ? ? x: 'center' //位置居中

? ? },

? ? tooltip: {

? ? ? ? trigger: 'item', //觸發(fā)鍵,把鼠標(biāo)放在圖形上面觸發(fā)

formatter:"{a}<br/>:{c}(s0sssss00s%)"

? ? },

? ? legend: {

? ? ? ? orient: 'vertical', //垂直放圖例

? ? ? ? x: 'left', //圖例放在左邊

data:['1','2']

? ? },

? ? series: [

? ? ? ? {

? ? ? ? ? ? name: '名稱',

? ? ? ? ? ? type: 'pie',

selectdMode:'single',

? ? ? ? ? ? radius: '30%',

? ? ? ? ? ? data: [

? ? ? ? ? ? ? ? {value: 1048, name: '搜索引擎'},

? ? ? ? ? ? ? ? {value: 735, name: '直接訪問'},

? ? ? ? ? ? ? ? {value: 580, name: '郵件營銷'},

? ? ? ? ? ? ? ? {value: 484, name: '聯(lián)盟廣告'},

? ? ? ? ? ? ? ? {value: 300, name: '視頻廣告'}

? ? ? ? ? ? ],

? ? ? ? }

{

????????????name:'地區(qū)',

????????????type:'pie',

????????????radius:['40%','55%'],

????????????data:[

????????? ??? {value: 1048, name: '搜索引擎'},

? ? ? ? ? ? ? ? {value: 735, name: '直接訪問'},

? ? ? ? ? ? ? ? {value: 580, name: '郵件營銷'},

? ? ? ? ? ? ? ? {value: 484, name: '聯(lián)盟廣告'},

? ? ? ? ? ? ? ? {value: 300, name: '視頻廣告'}

????????????????]

????????}

? ? ]

};

?

?

?

3.繪出2015-2019年每年的案件副類別發(fā)生頻次隨年份的變化圖;(折線圖)

要求:1.圖形類別為折線圖;

title=‘2015年至2019年各案件副類別頻次圖’;

標(biāo)簽依次為電話詐騙,短信詐騙,網(wǎng)絡(luò)詐騙;

橫坐標(biāo)時(shí)間順序依次為2015年,2016年,2017年,2018年,2019年;

?

select class,count(*) from final where year(take_time)='2015'

group by class ;

電話詐騙 58

短信詐騙 29

網(wǎng)絡(luò)詐騙 368

select class,count(*) from final where year(take_time)='2016'

group by class ;

電話詐騙 53

短信詐騙 23

網(wǎng)絡(luò)詐騙 328

select class,count(*) from final where year(take_time)='2017'

group by class ;

電話詐騙 39

短信詐騙 19

網(wǎng)絡(luò)詐騙 367

select class,count(*) from final where year(take_time)='2018'

group by class ;

電話詐騙 30

短信詐騙 24

網(wǎng)絡(luò)詐騙 381

select class,count(*) from final where year(take_time)='2019'

group by class ;

電話詐騙 28

短信詐騙 9

網(wǎng)絡(luò)詐騙 244

option = {

? ? ? ? title : {

? ? ? ? ? ? text: '2015年至2019年各案件副類別頻次圖',

x:'center'

? ? ? ? ? ? ?},

? ? ? ? legend: {

? ? ? ? ? ? data:['電話詐騙','網(wǎng)絡(luò)詐騙','短信詐騙'], //標(biāo)簽

?????????????x:'right',

?????????????orient: 'vertical', //垂直放圖例

? ? ? ? },

? ? ? ? xAxis : [

? ? ? ? ? ? {

? ? ? ? ? ? ? ? type : 'category', //類目

? ? ? ? ? ? ? ? data : ['2015年','2016年','2017年','2018年','2019年']

? ? ? ? ? ? }

? ? ? ? ],

? ? ? ? yAxis : [

? ? ? ? ? ? {

? ? ? ? ? ? ? ? type : 'value', //數(shù)值軸

? ? ? ? ? ? ?}

? ? ? ? ],

? ? ? ? series : [

? ? ?? ? ? {

? ? ? ? ? ? ? ? name:'電話詐騙',

? ? ? ? ? ? ? ? type:'line', //圖形類型—折線圖

? ? ? ? ? ? ? ? data:[58,53,38,30,28]

? ? ? ? ? ? },

? ???????{

? ? ? ? ? ? ? ? name:'短信詐騙',

? ? ? ? ? ? ? ? type:'line', //圖形類型—折線圖

? ? ? ? ? ? ? ? data:[29,23,19,24,9]

? ? ? ? ? ? },

????????{

? ? ? ? ? ? ? ? name:'網(wǎng)絡(luò)詐騙',

? ? ? ? ? ? ? ? type:'line', //圖形類型—折線圖

? ? ? ? ? ? ? ? data:[368,328,367,381,244]

? ? ? ? ? ? },

? ? ? ? ]

? ? };

?

?

4.2016年與2018年各案件副類別破案率對比圖(柱狀圖)

要求:1.圖形類別為柱狀圖;

title=‘2016年與2018年各案件副類別破案率對比圖’;

標(biāo)簽依次為'2016年','2018年';

y軸為類目軸,其坐標(biāo)時(shí)間順序依次為電話詐騙破案率,短信詐騙破案率,網(wǎng)絡(luò)詐騙破案率;

round精度為小數(shù)點(diǎn)后2位;

?


hive的評論 (共 條)

分享到微博請遵守國家法律
时尚| 金川县| 宝坻区| 广德县| 大同市| 新巴尔虎左旗| 海原县| 鄂托克前旗| 徐闻县| 临洮县| 罗江县| 昂仁县| 蒙阴县| 梨树县| 吉木萨尔县| 广南县| 郯城县| 阿荣旗| 丰台区| 嘉善县| 江永县| 德惠市| 米林县| 烟台市| 阜城县| 甘孜县| 汪清县| 乃东县| 旌德县| 登封市| 湾仔区| 红安县| 娱乐| 万安县| 丹凤县| 含山县| 永善县| 临猗县| 卢氏县| 筠连县| 平山县|