最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

量子場(chǎng)論(十一):時(shí)空中的粒子(二)

2022-12-24 06:31 作者:我的世界-華汁  | 我要投稿

(2)質(zhì)量為零的粒子:p%5E2%3D0p%5E0%3E0。

此時(shí)四維動(dòng)量是類光的,取標(biāo)準(zhǔn)四維動(dòng)量為k%5E%5Cmu%3D(%5Ckappa%2C0%2C0%2C%5Ckappa),其中κ>0。相應(yīng)小群中的任意群元滿足%7BW%5E%5Cmu%7D_%5Cnu%20k%5E%5Cnu%3Dk%5E%5Cmu。

我們需要知道這個(gè)小群是啥,引入%5Ctilde%20k%5E%5Cmu%3D%5Cfrac%7Bk%5E%5Cmu%7D%7B%5Ckappa%7D%3D(1%2C0%2C0%2C1),易知這個(gè)四維矢量在小群變換下也不變。再引入類時(shí)四維矢量%5Ctilde%20t%5E%5Cmu%3D(1%2C0%2C0%2C0),定義小群元對(duì)它的作用為t%5E%5Cmu%3D%7BW%5E%5Cmu%7D_%5Cnu%5Ctilde%20t%5E%5Cnu。從而:

t%5E%5Cmu%5Ctilde%20k_%5Cmu%3D%7BW%5E%5Cmu%7D_%5Cnu%5Ctilde%20t%5E%5Cnu%5Ctilde%20k_%5Crho%7B(W%5E%7B-1%7D)%5E%5Crho%7D_%5Cmu%3D%7B%5Cdelta%5E%5Crho%7D_%5Cnu%5Ctilde%20t%5E%5Cnu%5Ctilde%20k_%5Crho%3D%5Ctilde%20t%5E%5Cnu%5Ctilde%20k_%5Cnu%3D1.%5Ctag%7B10.26%7D

考慮到%5Ctilde%20k%5E%5Cmu%3D%5Cfrac%7Bk%5E%5Cmu%7D%7B%5Ckappa%7D%3D(1%2C0%2C0%2C1),滿足(10.26)的t%5E%5Cmu的一般形式為:

t%5E%5Cmu%3D(1%2B%5Czeta%2C%5Calpha%2C%5Cbeta%2C%5Czeta).%5Ctag%7B10.27%7D

另一方面,t%5E%5Cmu自己的內(nèi)積為:

t%5E%5Cmu%20t_%5Cmu%3D%7B%5Cdelta%5E%5Cnu%7D_%5Cmu%20t%5E%5Cmu%20t_%5Cnu%3D%7BW%5E%5Crho%7D_%5Cmu%20t%5E%5Cmu%20t_%5Cnu%7B(W%5E%7B-1%7D)%5E%5Cnu%7D_%5Crho%3D%5Ctilde%20t%5E%5Crho%5Ctilde%20t_%5Crho%3D1.%5Ctag%7B10.28%7D

因此(1%2B%5Czeta)%5E2-%5Calpha%5E2-%5Cbeta%5E2-%5Czeta%5E2%3D1,因此:

%5Czeta%3D%5Cfrac12(%5Calpha%5E2%2B%5Cbeta%5E2)%2C%5Calpha%2C%5Cbeta%5Cin(-%5Cinfty%2C%2B%5Cinfty).%5Ctag%7B10.29%7D

考慮固有保時(shí)向洛倫茲變換:

%7BT%5E%5Cmu%7D_%5Cnu(%5Calpha%2C%5Cbeta)%3D%5Cbegin%7Bbmatrix%7D1%2B%5Czeta%26%5Calpha%26%5Cbeta%26-%5Czeta%5C%5C%5Calpha%261%260%26-%5Calpha%5C%5C%5Cbeta%260%261%26-%5Cbeta%5C%5C%5Czeta%26%5Calpha%26%5Cbeta%261-%5Czeta%5Cend%7Bbmatrix%7D.%5Ctag%7B10.30%7D

在其作用之下:

%7BT%5E%5Cmu%7D_%5Cnu(%5Calpha%2C%5Cbeta)%5Ctilde%20t%5E%5Cnu%3Dt%5E%5Cmu%3D%7BW%5E%5Cmu%7D_%5Cnu%5Ctilde%20t%5E%5Cnu.%5Ctag%7B10.31%7D

也就是說:

%5Ctilde%20t%5E%5Crho%3D%7B%5BT%5E%7B-1%7D(%5Calpha%2C%5Cbeta)%5D%5E%5Crho%7D_%5Cmu%7BT%5E%5Cmu%7D_%5Cnu(%5Calpha%2C%5Cbeta)%5Ctilde%20t%5E%5Cnu%3D%7B%5BT%5E%7B-1%7D(%5Calpha%2C%5Cbeta)%5D%5E%5Crho%7D_%5Cmu%7BW%5E%5Cmu%7D_%5Cnu%5Ctilde%20t%5E%5Cnu.%5Ctag%7B10.32%7D

也就是說,變換T%5E%7B-1%7D(%5Calpha%2C%5Cbeta)W保持%5Ctilde%20t%5E%5Cmu%3D(1%2C0%2C0%2C0)不變,所以,它必然是一個(gè)空間旋轉(zhuǎn)變換。容易驗(yàn)證%7BT%5E%5Cmu%7D_%5Cnu(%5Calpha%2C%5Cbeta)k%5E%5Cnu%3Dk%5E%5Cmu,因此%7BT%5E%5Cmu%7D_%5Cnu(%5Calpha%2C%5Cbeta)是一個(gè)小群變換。因而小群變換T%5E%7B-1%7D(%5Calpha%2C%5Cbeta)W是保持k%5E%5Cmu%3D(%5Ckappa%2C0%2C0%2C%5Ckappa)不變的空間旋轉(zhuǎn)變換,它必定是繞z軸的空間旋轉(zhuǎn)變換,即滿足:

T%5E%7B-1%7D(%5Calpha%2C%5Cbeta)W%3DR_z(%5Ctheta).%5Ctag%7B10.33%7D

于是,小群變換的一般形式為:

W(%5Calpha%2C%5Cbeta%2C%5Ctheta)%3DT(%5Calpha%2C%5Cbeta)R_z(%5Ctheta).%5Ctag%7B10.34%7D

可以驗(yàn)證:

T(%5Calpha_1%2C%5Cbeta_1)T(%5Calpha_2%2C%5Cbeta_2)%3DT(%5Calpha_1%2B%5Calpha_2%2C%5Cbeta_1%2B%5Cbeta_2).%5Ctag%7B10.35%7D

R_z(%5Ctheta_1)R_z(%5Ctheta_2)%3DR_z(%5Ctheta_1%2B%5Ctheta_2).%5Ctag%7B10.36%7D

從而T(%5Calpha_1%2C%5Cbeta_1)T(%5Calpha_2%2C%5Cbeta_2)%3DT(%5Calpha_2%2C%5Cbeta_2)T(%5Calpha_1%2C%5Cbeta_1),R_z(%5Ctheta_1)R_z(%5Ctheta_2)%3DR_z(%5Ctheta_2)R_z(%5Ctheta_1)。因此%5C%7BT(%5Calpha%2C%5Cbeta)%5C%7D%5C%7BR_z(%5Ctheta)%5C%7D是小群的兩個(gè)阿貝爾子群。進(jìn)一步推出:

R_z%5E%7B-1%7D(%5Ctheta)T(%5Calpha%2C%5Cbeta)R_z(%5Ctheta)%3DT(%5Calpha%5Ccos%5Ctheta-%5Cbeta%5Csin%5Ctheta%2C%5Calpha%5Csin%5Ctheta%2B%5Cbeta%5Ccos%5Ctheta).%5Ctag%7B10.37%7D

這意味著T(α,β)在任意小群元素的相似變換下變換到子群{T(α,β)}中的元素,這種情況下,數(shù)學(xué)上把{T(α,β)}稱為小群的不變子群。全體坐標(biāo)點(diǎn)(α,β)組成一個(gè)二維平面,(10.35)表明T(α,β)是平面上的平移變換,(10.36)和(10.37)表明R_z(%5Ctheta)是平面上的旋轉(zhuǎn)變換。這些變換都保持二維歐幾里得空間的線元%5Cmathrm%20ds%5E2%3D%5Cmathrm%20d%5Calpha%5E2%2B%5Cmathrm%20d%5Cbeta%5E2不變,因此由他們構(gòu)成的小群是二維歐幾里得空間的等距群ISO(2)。

現(xiàn)在討論ISO(2)的生成元算符。ISO(2)變換的無窮小形式為%7BW%5E%5Cmu%7D_%5Cnu(%5Calpha%2C%5Cbeta%2C%5Ctheta)%3D%7B%5Cdelta%5E%5Cmu%7D_%5Cnu%2B%7B%5Comega%5E%5Cmu%7D_%5Cnu,其中無窮小參數(shù)為:

%7B%5Comega%5E%5Cmu%7D_%5Cnu%3D%5Cbegin%7Bbmatrix%7D0%26%5Calpha%26%5Cbeta%260%5C%5C%5Calpha%260%26%5Ctheta%26-%5Calpha%5C%5C%5Cbeta%26-%5Ctheta%260%26-%5Cbeta%5C%5C0%26%5Calpha%26%5Cbeta%260%5Cend%7Bbmatrix%7D.%5Ctag%7B10.38%7D

容易驗(yàn)證%7B%5Comega%5E%5Cmu%7D_%5Cnu%20k%5E%5Cnu%3D0,因此這樣的無窮小變換導(dǎo)致k%5E%5Cmu不變。反對(duì)稱無窮小參數(shù)為:

%5Comega_%7B%5Cmu%5Cnu%7D%3Dg_%7B%5Cmu%5Crho%7D%7B%5Comega%5E%5Crho%7D_%5Cnu%3D%5Cbegin%7Bbmatrix%7D0%26%5Calpha%26%5Cbeta%260%5C%5C-%5Calpha%260%26-%5Ctheta%26%5Calpha%5C%5C-%5Cbeta%26%5Ctheta%260%26%5Cbeta%5C%5C0%26-%5Calpha%26-%5Cbeta%260%5Cend%7Bbmatrix%7D.%5Ctag%7B10.39%7D

%5Calpha%3D-%5Comega_%7B31%7D%3D%5Comega_%7B13%7D%3D%5Comega_%7B01%7D%3D-%5Comega_%7B10%7D%2C%5Cbeta%3D%5Comega_%7B23%7D%3D-%5Comega_%7B32%7D%3D%5Comega_%7B02%7D%3D-%5Comega_%7B20%7D%2C%5Ctheta%3D%5Comega_%7B21%7D%3D-%5Comega_%7B12%7D.%5Ctag%7B10.40%7D

相應(yīng)的無窮小量子變換為:

%5Cbegin%7Balign%7D%5Chat%20U(%5Cmathbf1%2B%5Comega)%26%3D1-i(%5Comega_%7B31%7D%5Chat%20J%5E%7B31%7D%2B%5Comega_%7B01%7D%5Chat%20J%5E%7B01%7D)-i(%5Comega_%7B23%7D%5Chat%20J%5E%7B23%7D%2B%5Comega_%7B02%7D%5Chat%20J%5E%7B02%7D)-i%5Comega_%7B12%7D%5Chat%20J%5E%7B12%7D%5C%5C%26%3D1%2Bi%5Calpha%5Chat%20A%2Bi%5Cbeta%5Chat%20B%2Bi%5Ctheta%5Chat%20J%5E3.%5Cend%7Balign%7D%5Ctag%7B10.41%7D

其中生成元算符%5Chat%20A%5Chat%20B為:

%5Chat%20A%5Cequiv%5Chat%20J%5E%7B31%7D-%5Chat%20J%5E%7B01%7D%3D%5Chat%20J%5E2-%5Chat%20K%5E1%2C%5Chat%20B%5Cequiv-%5Chat%20J%5E%7B23%7D-%5Chat%20J%5E%7B02%7D%3D-%5Chat%20J%5E1-%5Chat%20K%5E2.%5Ctag%7B10.42%7D

由洛倫茲代數(shù)關(guān)系推知生成元算符%5Chat%20J%5E3、%5Chat%20A%5Chat%20B的對(duì)易關(guān)系:

%5B%5Chat%20J%5E3%2C%5Chat%20A%5D%3D%5B%5Chat%20J%5E3%2C%5Chat%20J%5E2%5D-%5B%5Chat%20J%5E3%2C%5Chat%20K%5E1%5D%3D-i%5Chat%20J%5E1-i%5Chat%20K%5E2%3Di%5Chat%20B.%5Ctag%7B10.43%7D

%5B%5Chat%20J%5E3%2C%5Chat%20B%5D%3D-%5B%5Chat%20J%5E3%2C%5Chat%20J%5E1%5D-%5B%5Chat%20J%5E3%2C%5Chat%20K%5E2%5D%3D-i%5Chat%20J%5E2%2Bi%5Chat%20K%5E1%3D-i%5Chat%20A.%5Ctag%7B10.44%7D

%5B%5Chat%20A%2C%5Chat%20B%5D%3D-%5B%5Chat%20J%5E2%2C%5Chat%20J%5E1%5D-%5B%5Chat%20J%5E2%2C%5Chat%20K%5E2%5D%2B%5B%5Chat%20K%5E1%2C%5Chat%20J%5E1%5D%2B%5B%5Chat%20K%5E1%2C%5Chat%20K%5E2%5D%3Di%5Chat%20J%5E3-i%5Chat%20J%5E3%3D0.%5Ctag%7B10.45%7D

這與龐加萊代數(shù)關(guān)系

%5B%5Chat%20J%5E3%2C%5Chat%20P%5E2%5D%3Di%5Chat%20P%5E1%2C%5B%5Chat%20J%5E3%2C%5Chat%20P%5E1%5D%3D-i%5Chat%20P%5E2%2C%5B%5Chat%20P%5E2%2C%5Chat%20P%5E1%5D%3D0%5Ctag%7B10.46%7D

相同,畢竟%5Chat%20J%5E3、%5Chat%20P%5E1%5Chat%20P%5E2生成了xy平面的ISO(2)群。

由(10.45)式知道這兩個(gè)算符對(duì)易,因此具有共同本征態(tài)%7C%5CPsi_%7Ba%2Cb%7D(k%5E%5Cmu)%5Crangle,本征值分別為a,b,滿足:

%5Chat%20A%7C%5CPsi_%7Ba%2Cb%7D(k%5E%5Cmu)%5Crangle%3Da%7C%5CPsi_%7Ba%2Cb%7D(k%5E%5Cmu)%5Crangle%2C%5Chat%20B%7C%5CPsi_%7Ba%2Cb%7D(k%5E%5Cmu)%5Crangle%3Db%7C%5CPsi_%7Ba%2Cb%7D(k%5E%5Cmu)%5Crangle.%5Ctag%7B10.47%7D

小群ISO(2)的量子變換滿足同態(tài)關(guān)系:

%5Chat%20U%5E%7B-1%7D%5BR_z(%5Ctheta)%5D%5Chat%20U%5BT(%5Calpha%2C%5Cbeta)%5D%5Chat%20U%5BR_z(%5Ctheta)%5D%3D%5Chat%20U%5BT(%5Calpha%5Ccos%5Ctheta-%5Cbeta%5Csin%5Ctheta%2C%5Calpha%5Csin%5Ctheta%2B%5Cbeta%5Ccos%5Ctheta)%5D.%5Ctag%7B10.48%7D

將上式展開到無窮小參數(shù)的第一階:

%5Chat%20U%5E%7B-1%7D%5BR_z(%5Ctheta)%5D(1%2Bi%5Calpha%5Chat%20A%2Bi%5Cbeta%5Chat%20B)%5Chat%20U%5BR_z(%5Ctheta)%5D%3D1%2Bi(%5Calpha%5Ccos%5Ctheta-%5Cbeta%5Csin%5Ctheta)%5Chat%20A%2Bi(%5Calpha%5Csin%5Ctheta%2B%5Cbeta%5Ccos%5Ctheta)%5Chat%20B.%5Ctag%7B10.49%7D

由無窮小參數(shù)的任意性推出:

%5Chat%20U%5E%7B-1%7D%5BR_z(%5Ctheta)%5D%5Chat%20A%5Chat%20U%5BR_z(%5Ctheta)%5D%3D%5Chat%20A%5Ccos%5Ctheta%2B%5Chat%20B%5Csin%5Ctheta%2C%5Chat%20U%5E%7B-1%7D%5BR_z(%5Ctheta)%5D%5Chat%20B%5Chat%20U%5BR_z(%5Ctheta)%5D%3D-%5Chat%20A%5Csin%5Ctheta%2B%5Chat%20B%5Ccos%5Ctheta.%5Ctag%7B10.50%7D

%5Chat%20A%5Chat%20U%5BR_z(%5Ctheta)%5D%3D%5Chat%20U%5BR_z(%5Ctheta)%5D(%5Chat%20A%5Ccos%5Ctheta%2B%5Chat%20B%5Csin%5Ctheta)%2C%5Chat%20B%5Chat%20U%5BR_z(%5Ctheta)%5D%3D%5Chat%20U%5BR_z(%5Ctheta)%5D(-%5Chat%20A%5Csin%5Ctheta%2B%5Chat%20B%5Ccos%5Ctheta).%5Ctag%7B10.51%7D

那么,態(tài)矢%7C%5CPsi_%7Ba%2Cb%2C%5Ctheta%7D(k%5E%5Cmu)%5Crangle%3D%5Chat%20U%5BR_z(%5Ctheta)%5D%7C%5CPsi_%7Ba%2Cb%7D(k%5E%5Cmu)%5Crangle%5Chat%20A%2C%5Chat%20B的共同本征態(tài):

%5Cbegin%7Balign%7D%5Chat%20A%7C%5CPsi_%7Ba%2Cb%2C%5Ctheta%7D(k%5E%5Cmu)%5Crangle%26%3D%5Chat%20A%5Chat%20U%5BR_z(%5Ctheta)%5D%7C%5CPsi_%7Ba%2Cb%7D(k%5E%5Cmu)%5Crangle%3D%5Chat%20U%5BR_z(%5Ctheta)%5D(%5Chat%20A%5Ccos%5Ctheta%2B%5Chat%20B%5Csin%5Ctheta)%7C%5CPsi_%7Ba%2Cb%7D(k%5E%5Cmu)%5Crangle%5C%5C%26%3D%5Chat%20U%5BR_z(%5Ctheta)%5D(a%5Ccos%5Ctheta%2Bb%5Csin%5Ctheta)%7C%5CPsi_%7Ba%2Cb%7D(k%5E%5Cmu)%5Crangle%3D(a%5Ccos%5Ctheta%2Bb%5Csin%5Ctheta)%7C%5CPsi_%7Ba%2Cb%2C%5Ctheta%7D(k%5E%5Cmu)%5Crangle.%5Cend%7Balign%7D%5Ctag%7B10.52%7D

%5Cbegin%7Balign%7D%5Chat%20B%7C%5CPsi_%7Ba%2Cb%2C%5Ctheta%7D(k%5E%5Cmu)%5Crangle%26%3D%5Chat%20B%5Chat%20U%5BR_z(%5Ctheta)%5D%7C%5CPsi_%7Ba%2Cb%7D(k%5E%5Cmu)%5Crangle%3D%5Chat%20U%5BR_z(%5Ctheta)%5D(-%5Chat%20A%5Csin%5Ctheta%2B%5Chat%20B%5Ccos%5Ctheta)%7C%5CPsi_%7Ba%2Cb%7D(k%5E%5Cmu)%5Crangle%5C%5C%26%3D%5Chat%20U%5BR_z(%5Ctheta)%5D(-a%5Csin%5Ctheta%2Bb%5Ccos%5Ctheta)%7C%5CPsi_%7Ba%2Cb%7D(k%5E%5Cmu)%5Crangle%3D(-a%5Csin%5Ctheta%2Bb%5Ccos%5Ctheta)%7C%5CPsi_%7Ba%2Cb%2C%5Ctheta%7D(k%5E%5Cmu)%5Crangle.%5Cend%7Balign%7D%5Ctag%7B10.53%7D

當(dāng)a,b固定時(shí),由于轉(zhuǎn)動(dòng)角θ取連續(xù)值,本征值acosθ+bsinθ和-asinθ+bcosθ也是連續(xù)的,因此,只要a和b不全為零,就有一系列連續(xù)的本征態(tài)%7C%5CPsi_%7Ba%2Cb%2C%5Ctheta%7D(k%5E%5Cmu)%5Crangle,但是,我們沒有觀測(cè)到無質(zhì)量粒子具有以轉(zhuǎn)動(dòng)角θ作為連續(xù)自由度的物理態(tài)。因此,自然界中的物理態(tài)是a=b=0的本征態(tài),只由小群生成元算符%5Chat%20J%5E3的本征值σ標(biāo)記,記作%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle,滿足:

%5Chat%20A%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle%3D0%2C%5Chat%20B%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle%3D0%2C%5Chat%20J%5E3%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle%3D%5Csigma%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle.%5Ctag%7B10.54%7D

對(duì)于單粒子態(tài)%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle,%5Chat%7B%5Cmathbf%20J%7D是自旋角動(dòng)量算符。標(biāo)準(zhǔn)四維動(dòng)量k%5E%5Cmu%3D(%5Ckappa%2C0%2C0%2C%5Ckappa)的空間分量k沿著z軸方向,因而σ是自旋角動(dòng)量在動(dòng)量方向的投影本征值,稱為螺旋度。

無窮小量子變換(10.41)表明:

%5Cfrac%7B%5Cpartial%5Chat%20U%5BT(%5Calpha%2C%5Cbeta)%5D%7D%7B%5Cpartial%5Calpha%7D%5Cbigg%7C_%7B%5Calpha%3D%5Cbeta%3D0%7D%3Di%5Chat%20A%2C%5Cfrac%7B%5Cpartial%5Chat%20U%5BT(%5Calpha%2C%5Cbeta)%5D%7D%7B%5Cpartial%5Cbeta%7D%5Cbigg%7C_%7B%5Calpha%3D%5Cbeta%3D0%7D%3Di%5Chat%20B%2C%5Cfrac%7B%5Cmathrm%20d%5Chat%20U%5BR_z(%5Ctheta)%5D%7D%7B%5Cmathrm%20d%5Ctheta%7D%5Cbigg%7C_%7B%5Ctheta%3D0%7D%3Di%5Chat%20J%5E3.%5Ctag%7B10.55%7D

由此求得:

%5Chat%20U%5BT(%5Calpha%2C%5Cbeta)%5D%3De%5E%7Bi%5Calpha%5Chat%20A%2Bi%5Cbeta%5Chat%20B%7D%2C%5Chat%20U%5BR_z(%5Ctheta)%5D%3De%5E%7Bi%5Ctheta%5Chat%20J%5E3%7D.%5Ctag%7B10.56%7D

由此求得一般的小群變換(10.34)為:

%5Chat%20U%5BW(%5Calpha%2C%5Cbeta%2C%5Ctheta)%5D%3De%5E%7Bi%5Calpha%5Chat%20A%2Bi%5Cbeta%5Chat%20B%2Bi%5Ctheta%5Chat%20J%5E3%7D.%5Ctag%7B10.57%7D

作用到單粒子態(tài)%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle上,得到:

%5Chat%20U%5BW(%5Calpha%2C%5Cbeta%2C%5Ctheta)%5D%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle%3De%5E%7Bi%5Csigma%5Ctheta%7D%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle.%5Ctag%7B10.58%7D

代入(10.11)式得:

D_%7B%5Csigma%5E%5Cprime%5Csigma%7D(W)%3De%5E%7Bi%5Csigma%5Ctheta%7D%5Cdelta_%7B%5Csigma%5E%5Cprime%5Csigma%7D.%5Ctag%7B10.59%7D

另一方面,(10.9)式化為:

V%5E%7B-1%7D(%5CLambda%20p)%5CLambda%20V(p)%3DW%3DT%5B%5Calpha(%5CLambda%2Cp)%2C%5Cbeta(%5CLambda%2Cp)%5DR_z%5B%5Ctheta(%5CLambda%2Cp)%5D.%5Ctag%7B10.60%7D

這個(gè)關(guān)系決定了θ依賴于%7B%5CLambda%5E%5Cmu%7D_%5Cnup%5E%5Cmu的關(guān)系。根據(jù)(10.16)式,得到:

%5Chat%20U(%5CLambda)%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle%3D%5Cfrac%7BN(p)%7D%7BN(%5CLambda%20p)%7De%5E%7Bi%5Csigma%5Ctheta(%5CLambda%2Cp)%7D%7C%5CPsi_%5Csigma(%7B%5CLambda%5E%5Cmu%7D_%5Cnu%20p%5E%5Cnu)%5Crangle.%5Ctag%7B10.61%7D

這個(gè)式子表明%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle與經(jīng)過量子洛倫茲變換之后的態(tài)%5Chat%20U(%5CLambda)%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle具有相同的σ,也就是說,量子洛倫茲變換不會(huì)混合具有不同螺旋度的無質(zhì)量粒子態(tài)。這意味著,對(duì)無質(zhì)量粒子來說,螺旋度σ是固有保時(shí)向洛倫茲變換的不變量,在所有慣性系中取值相同。因此,無質(zhì)量粒子可根據(jù)螺旋度σ的值分類。

前面提到,固有保時(shí)向洛倫茲群SO%5E%5Cuparrow(1%2C3)是群空間是雙連通的,與SO(3)的情況類似,群空間內(nèi)從恒元出發(fā)、經(jīng)過%5CLambda_1和?%5CLambda_2%5CLambda_1再回到恒元的閉合曲線分為兩類,一類能連續(xù)收縮成恒元一點(diǎn),另一類不能。可以推出類似(10.23)式的關(guān)系:

%5Chat%20U(%5CLambda_2)%5Chat%20U(%5CLambda_1)%3D%5Cpm%5Chat%20U(%5CLambda_2%5CLambda_1).%5Ctag%7B10.62%7D

對(duì)于無質(zhì)量粒子,(10.61)式表明,相位因子±1起源于繞z軸轉(zhuǎn)動(dòng)角度θ=2π引起的e%5E%7B2%5Cpi%20i%5Csigma%7D因子,即:

e%5E%7B2%5Cpi%20i%5Csigma%7D%3D%5Cpm%201.%5Ctag%7B10.63%7D

這個(gè)條件限制了無質(zhì)量粒子螺旋度的取值,要求:

%5Csigma%3D0%2C%5Cpm%5Cfrac12%2C%5Cpm1%2C%5Cpm%5Cfrac32%2C%5Cpm2%2C%E2%80%A6%5Ctag%7B10.64%7D

σ為整數(shù)對(duì)應(yīng)于SO%5E%5Cuparrow(1%2C3)的線性表示,σ為半奇數(shù)對(duì)應(yīng)于SO%5E%5Cuparrow(1%2C3)的雙值表示。由于螺旋度是自旋角動(dòng)量在動(dòng)量方向上的投影,無質(zhì)量粒子自旋量子數(shù)可?。?/p>

s%3D%7C%5Csigma%7C%3D0%2C%5Cfrac12%2C1%2C%5Cfrac32%2C2%2C%E2%80%A6%5Ctag%7B10.65%7D

與有質(zhì)量粒子的取值情況一樣。

于是,自旋為 s 的無質(zhì)量粒子具有 2 種自旋極化態(tài),對(duì)應(yīng)于兩種螺旋度σ?= ±s。如果沒有額外的條件,可以把 s 相同而σ不同的兩個(gè)無質(zhì)量粒子當(dāng)作不同的粒子對(duì)待。不過,額外的條件是存在的。宇稱變換會(huì)改變 σ 的符號(hào),而電磁相互作用、強(qiáng)相互作用和引力相互作用都保持宇稱守恒,如果無質(zhì)量粒子不具有破壞宇稱的相互作用,則螺旋度相反的兩種粒子具有相同的相互作用行為。從而,可以把它們當(dāng)作同一種粒子的兩種自由度。比如,作為電磁場(chǎng)的量子,光子是自旋為 1 的無質(zhì)量粒子,具有-1和+1兩種螺旋度,分別對(duì)應(yīng)于真空電磁波的左旋圓極化和右旋圓極化。假想的引力子是自旋為2的無質(zhì)量粒子,具有-2和+2兩種螺旋度。在標(biāo)準(zhǔn)模型中,自旋為%5Cfrac12的中微子沒有質(zhì)量,參與破壞宇稱的弱相互作用,因而可以把螺旋度相反的兩種中微子當(dāng)作兩種粒子,螺旋度為-%5Cfrac12的是狹義的中微子,螺旋度為%2B%5Cfrac12的稱為反中微子。

(3)真空:p%5E%5Cmu%3D(0%2C0%2C0%2C0)。

此時(shí)取k%5E%5Cmu%3D(0%2C0%2C0%2C0),它在任意洛倫茲變換下不變,相應(yīng)的小群是固有保時(shí)向洛倫茲群?SO%5E%5Cuparrow(1%2C3)。


量子場(chǎng)論(十一):時(shí)空中的粒子(二)的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
桑植县| 梁平县| 云安县| 陕西省| 通化县| 迁西县| 湖北省| 中超| 颍上县| 六安市| 和政县| 远安县| 房产| 襄垣县| 乳源| 赣州市| 双柏县| 琼结县| 枣庄市| 利川市| 嫩江县| 城固县| 台东县| 蒙自县| 龙海市| 衡阳县| 通江县| 南岸区| 壤塘县| 汕尾市| 馆陶县| 斗六市| 锦屏县| 蒲城县| 介休市| 甘孜县| 油尖旺区| 嘉黎县| 江阴市| 枝江市| 广东省|