最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

wiki筆記:Claustrum--2022/2/9

2022-02-09 20:00 作者:yu4le4  | 我要投稿

Claustrum

From Wikipedia, the free encyclopedia

Jump to navigationJump to search

Not to be confused with?Colostrum.

Claustrum


The?claustrum?(Latin, meaning "to close" or "to shut") is a thin, bilateral collection of neurons and supporting glial cells, that connects to?cortical?(e.g., the?pre-frontal cortex) and?subcortical?regions (e.g., the?thalamus) of the brain.[1][2]?It is located Between the?insula?laterally and the?putamen?medially, separated by the?extreme?and?external capsules?respectively.[1][3]?The blood supply to the claustrum is fulfilled via the?middle cerebral artery.[1]?It is considered to be the most densely connected structure in the brain, allowing for integration of various cortical inputs?(e.g., colour, sound and touch) into one experience rather than singular events.

(所謂的大局觀。即同時接收復雜的外界信息,從整體進行處理。)

[3][4]?The claustrum is difficult to study given the limited number of individuals with claustral lesions and the poor resolution of?neuroimaging.[3]

The claustrum is made up of various cell types differing in size, shape and neurochemical composition.[3]?Five cell types exist, and a majority of these cells resemble?pyramidal neurons?found in the cortex.[5]?Within the claustrum, there is no organization of cell types compared to the cortex, and the?somas?of the cells can be a pyramidal, fusiform or circular shape.[1]?The principal cell type found in the claustrum is type 1 cells, which are large cells covered in spiny?dendrites.

The claustrum usually connects to the cortex in an?ipsilateral?manner; however, the few that travel contralaterally are considerably weaker than the former.[1]?The claustrum acts as a conductor for inputs from the cortical regions so these respective areas do not become unsynchronized.[1][2][6][7]?Without the claustrum, one could respond to stimuli that are familiar to the individual but not to complex events

(關(guān)鍵是,在處理complex events時,所有類型的信息都涌入claustrum,但是此時claustrum并沒有觸發(fā)NE放大環(huán)路,這說明丘腦并沒有被complex events給興奮,而claustrum也不投射到杏仁核,那么就很明顯了,claustrum工作時應該恰逢在DA狀態(tài)下,而且當個體去意識到complex events時,是不興奮丘腦(丘腦處于serotonin狀態(tài)中)的,而去用到claustrum,而此時大腦的供血量有可能也是充足的(鑒于claustrum幾乎不怎么出事故)。還有一個特點是,這種complex events大概只局限于一側(cè)大腦,換句話說,當你處于復雜信息同時考慮狀態(tài)下,應該只是一側(cè)大腦皮層在與claustrum進行交流信息,而claustrum與大腦皮層的連接關(guān)系類似于丘腦與大腦皮層的連接關(guān)系,也是reciprocal connection,也是幾乎所有皮層都投射到claustrum。上述觀點似乎不對,因為另一側(cè)大腦的活動激發(fā)NE放大環(huán)路,從而激發(fā)交感系統(tǒng),也會擾亂另一側(cè)大腦的DA狀態(tài)。不過在claustrum思考狀態(tài),很容易感到疲勞,然后忘記剛才思考的內(nèi)容,complex events思考應該適用于即時思考,而不是建立complex events記憶,很有可能因為claustrum不能儲存記憶。

.[1]?Additionally, the claustrum is essential in combining?sensory?and motor modalities so that various anatomical patterns are present.[6][8]?One of the proposed functions of the claustrum is to differentiate Between relevant and irrelevant information so that the latter can be ignored

(這才是claustrum的關(guān)鍵點。從complex information中分揀出有用的相關(guān)信息。所謂大局觀,是要求先能夠同時意識到所有信息,然后才會涉及differentiate Between relevant and irrelevant information,最后實現(xiàn)irrelevant information?can be ignored)

.[4][8][9]?Cortical components of?consciousness?include the fronto-parietal cortex,?cingulate?and?precuneus. Due to the claustrum's widespread connectivity to these areas, it is suggested that it may play a role in both?attention?and?consciousness.[2]?The neural networks that mediate sustained attention and consciousness implicate numerous cortical areas, many of which overlap in connectivity with the claustrum. Previous clinical reports suggest that conscious processes are?lateralized?to the left hemisphere in humans.[10]

Contents

·?1Structure

·?1.1Connections

·?1.2Microanatomy

·?1.3Cell-types

·?2Function

·?2.1Potential function

·?2.2Attention

·?2.3Empirical evidence

·?2.4Lesions and consciousness

·?3Clinical significance

·?3.1Schizophrenia

·?3.2Epilepsy

·?3.3Consciousness

·?3.4Parkinsonism

·?4Other animals

·?4.1Cats

·?4.2Rodents

·?4.3Monkeys

·?5References

·?6External links

Structure[edit]

The claustrum is a small bilateral?gray matter?structure (comprising roughly 0.25% of the cerebral cortex) located deep to the insular cortex and extreme capsule, and superficial to the external capsule and basal ganglia. As mentioned, its name means “hidden or shut away” and was first identified in 1672, with more detailed descriptions coming later on during the 19th century.[1][11]?Although the regional neuroanatomical boundaries of the claustrum have been defined, there remains a lack of consensus in the literature when defining its precise margins.[9][12][13]

Connections[edit]

Despite this long history of reports on the claustrum, descriptions of its overall connectivity have been sparse.[14]?However, recent work has suggested that this mysterious structure is present in all mammals, with extensive connections to cortical and subcortical regions.[15][16]?More specifically,?electrophysiological?studies show extensive connections to?thalamic nuclei?and the?basal ganglia, while isotopological reports have linked the claustrum with the prefrontal, frontal, parietal, temporal and occipital cortices.[17][18]?Additional studies have also looked at the relationship of the claustrum to well-described subcortical white matter tracts. Structures such as the?corona radiata,?occipitofrontal fasciculus?and?uncinate fasciculus?project to the claustrum from frontal, pericentral, parietal and occipital regions.[19]?Reciprocal connections also exist with motor,?somatosensory,?auditory?and visual cortical regions.[9]?Altogether, these findings leave the claustrum as the most highly connected structure per regional volume in the brain?and suggest that it may serve as a hub to coordinate activity of cerebral circuits.[20][21]?Even with this extensive connectivity, most projections to and from the claustrum are ipsilateral (although there are still contralateral projections), and little evidence exists to describe its afferent or efferent connections with the brainstem and spinal cord.[9][14][22]?In summary, the cortical and subcortical connectivity of the claustrum implies that it is most involved with processing sensory information, as well as the physical and emotional state of an animal.

Microanatomy[edit]

Inputs to the claustrum are organized by modality, which include visual, auditory and?somatomotor?processing areas. In the same way that the morphology of neurons in the?spinal cord?is indicative of function (i.e.?rexed laminae), the visual, auditory and somatomotor regions within the claustrum share similar neurons with specific functional characteristics. For example, the portion of the claustrum that processes visual information (primarily synthesizing afferent fibers concerned with our peripheral visual field) is comprised by a majority of binocular cells that have “elongated receptive fields and no orientation selectivity.[23][24]?This focus on peripheral sensory system is not an isolated occurrence, as most sensory afferents entering the claustrum bring peripheral sensory information. Moreover, the claustrum possesses a distinct?topological?organization for each sensory modality. For example, there is a retinotopic organization within the visual processing area of the claustrum that mirrors that of visual association cortices and V1, in a similar (yet less complicated) manner to the retinotopic conservation within the lateral geniculate nucleus.[9]

Cell-types[edit]

The claustrum is made up of various cell-types that differ in size, shape and neurochemical composition.[3]?Excitatory cell types in the claustrum consist of two main classes which differentially project to?cortical?and?subcortical?brain regions. Inhibitory neurons represent only 10%-15% of the neurons within the claustrum and consist of three types expressing?parvalbumin,?somatostatin?or?vasoactive intestinal peptide, similar to inhibitory neurons in the cortex.[25]?Finally, many studies show that the claustrum is best distinguished structurally by its prominent plexus of parvalbumin-positive fibers formed by the parvalbumin expressing inhibitory cell type.[4]

An analysis in the?mouse?indicates that eight types of claustral cells exist with five subtypes of excitatory?pyramidal neurons?and three subtypes of?inhibitory neurons.[26]

Function[edit]

The claustrum has been shown to have widespread activity to numerous cortical components, all of which have been associated with having components of consciousness and sustained attention. This is because of widespread connectivity to fronto-parietal areas, cingulate cortex, and thalami. Sustained attention is from the connections to the cingulate cortex, temporal cortex, and thalamus.

Crick and Koch suggest that the claustrum has a role similar to that of a conductor within an orchestra as it attempts to co-ordinate the function of all connections.[1]?This “conductor” analogy can also be supported through connections Between the claustral, sensory, and frontal regions. The claustrum has been confirmed to be reciprocally connected to the prefrontal cortex, visual, auditory, sensory, and motor regions respectively. Connections to these modalities provide insight into the functionality of the claustrum. Here it is proposed that the claustrum functions in the gating of selective attention. Through this gating process the claustrum can selectively control input from these modalities to facilitate the process of “focusing”. It has also been suggested that it operates in the opposite context; that through divisive normalization the claustrum may implement resistance to certain input modalities to prevent “distraction”.

Potential function[edit]

The claustrum, in order to facilitate consciousness, would need to integrate various sensory and motor modalities from various parts of the cortex. The anatomical connections of the claustrum have been observed using DTI (diffusion tensor imaging). An fMRI scan looks at oxygenated blood levels in the brain as a way of observing the activity of specific cortical areas. fMRI scans show dampened activity when anesthetized versus awake in rats, specifically claustrum connections to the medial prefrontal cortex (mPFC) and the mediodorsol thalamus (MD thalamus). The claustrum is connected with the contralateral hemisphere's claustrum with strong and functional connections.?Connections with MD thalamus, mPFC, and surrounding and distant cortical areas also exist.[6]

Electrical stimulation in the dorsal claustrum of cats elicits excitatory responses within the visual cortex. The claustrum is situated anatomically at the confluence of a large number of white-matter tracts used to connect different parts of the cortex. This further suggests an integration center role for these different modalities, such as sensory and motor. Gap junctions have been shown to exist Between aspiny interneurons of the claustrum – suggesting a role in its ability to synchronize these modalities as input is received.[1]

Attention[edit]

The claustrum has the differential ability to select Between task relevant information and task irrelevant information to provide directed attention.?It contains the highest density of connecting white matter tracts in the cortex. This supports the notion of networking and coordination among different regions of the brain.[8]?The claustrum has regional specificity to it; information coming in from visual centers project to specific areas of grey matter neurons in the structure and the auditory cortex.[1]Unexpected stimuli also activate the claustrum(或許是背景中突然出現(xiàn)一個意想不到的事物,會嚇一跳,比如刷手機時以為背后沒有人,結(jié)果有個寶寶坐著也盯著你的手機看。這也意味著,claustrum能做到這一點,需要claustrum通常在NE狀態(tài)下進行), effecting an immediate focusing or allocation of function. In lower mammals (e.g. rats), claustral regions receive input from somatosensory modalities, such as whiskers' motor control perspective because of its sensory and discriminatory use in these mammals.[9]

Functionally, it is proposed that it segregates attention Between these modalities. Attention itself has been considered as top-down processing or bottom-up processing; both fit contextually with what is observed in the claustrum structurally and functionally, supporting the notion that interactions occur with high-order sensory areas involved in encoding objects and features. Input from the prefrontal cortex, for example, will define attention based upon higher-cognitive task driven behaviour. Moreover, induction of electrical stimulation to the claustrum has been shown to cause inhibition reading, a blank stare, and unresponsiveness. It has been reported that the claustrum has a basal frequency firing that is modulated to increase or decrease with directed attention. For example, projections to motor and oculomotor areas would assist with gaze movement to direct attention to new stimuli by increasing the firing frequency of claustral neurons.[9]

Salvinorin A, the active hallucinogenic compound found in Salvia Divinorum, is capable of inducing loss of awareness. Consumption of salvinorin A can induce synesthesia, in which different sensory modalities are interpreted by different sensory cortices. (For example: seeing sounds, tasting colours.) This supports the idea of intrathalamic segregation and conduction (attention). The claustrum has Kappa Opioid Receptors to which Salvinorin A binds, eliciting this effect.[3][9]

Empirical evidence[edit]

High frequency stimulation?(HFS) in cat claustrum(s) has the capability to induce autonomic changes and induce “inactivation syndrome”. This syndrome is described as a decrease in awareness, indicating the relationship Between the claustrum and consciousness.[27]?In humans this same effect can be observed. Stimulation of the left claustrum in humans has produced 'a complete arrest of volitional behavior, unresponsiveness, and amnesia without negative motor symptoms or mere aphasia' suggesting the involvement in consciousness.[10]?Furthermore, MRI studies have shown that increased signal intensity within the claustrum has been associated with status epilepticus – a condition in which epileptic seizures follow one another without recovery of consciousness in-Between events.[28][29]?As well, increased signal intensity is associated with Focal dyscognitive seizures, which are seizures that elicit impairment of awareness or consciousness without convulsions. The individual becomes unaware of his or her environment, and the seizure will manifest as a blank or empty stare for a window of time.

Using an operant conditioning task combined with HFS of the claustrum resulted in significant behavioural changes of rats; this included modulated motor responses, inactivity and decreased responsiveness.?[2]?Beyond this, studies have also shown that the claustrum is active during REM sleep, alongside other structures such as the dentate gyrus. These have associative roles in spatial memory, suggesting that some form of memory consolidation takes place in these areas.[4]

Lesions and consciousness[edit]

Functionally, the claustrum will integrate various cortical inputs through its connections into consciousness. Based upon its structure and connectivity, its function is suggested to do with coordination of different brain function; i.e. the conductor analogy. Consciousness functionally can be divided into two components: (i) wakefulness, which is arousal and alertness; (ii) content of consciousness, which is the processing of content. A study of traumatic brain injuries in war veterans was undertaken to Better understand the functional role of the claustrum. Damage to the claustrum was associated with duration of loss of consciousness, but not frequency. Lesion size was correlated with greater duration of LOC events. Interestingly, no consequences were shown to attenuate cognitive processing.[3]

In a single case-study, consciousness was shown to be disrupted when there was stimulation to the extreme capsule of the brain – which is in close proximity to the claustrum – such that upon termination of stimulation, consciousness was regained.[10]?Another study looking at the symptomology of schizophrenia established that the severity of delusions was associated with decreased grey matter volume of the left claustrum; postulating that correlations exist Between the structure and positive symptoms seen in this psychiatric disorder. Further supporting this correlation Between schizophrenia and the claustrum is that there is an increase in white matter volume entering the claustrum.[30]?Inverse correlations Between grey matter volume and severity of hallucinations in the context of auditory hallucinations of schizophrenia has been supported.[31]?As well, to see the total loss of function of the claustrum, lesions to both claustrums on each hemisphere would need to occur.[1]

However, a recent study consisting of electrical stimulation of the claustrum found no disruption of consciousness in any of the five patients that were subjected to the analysis. The tested patients reported subjective experiences in various sensory domains and exhibited reflexive movement, but none of them displayed loss of consciousness, thus questioning the claustrum's ability to disrupt consciousness when stimulated electrically.[32]

Clinical significance[edit]

Schizophrenia[edit]

Damage to the claustrum may mimic various common diseases or mental disorders; delayed development of the structure appears to be linked to?autism. The claustrum may be involved in?schizophrenia?as findings show an increase in positive symptoms, such as delusions, when the grey matter volume of the left claustrum and right insula is decreased.[31]

New Onset Refractory Status?Epilepticus?with Claustrum Damage

Epilepsy[edit]

The claustrum is also seen to play a role in epilepsy; MRIs have found increased claustral signal intensity in persons who have been diagnosed with epilepsy. In certain cases, seizures tend to appear to originate from the claustrum when they are involved in early?kainic acid induced seizures.[2]

Consciousness[edit]

A single case-study showed that consciousness was disrupted when the area Between the insula and claustrum was electrically stimulated; consciousness was regained when stimulation stopped.[3][10]?Patients that had a lesion in their left claustrum were more likely to experience a loss of consciousness compared to those that presented with lesions outside of the claustrum.[3]?For example,?a patient that was subjected to electrode stimulation at the claustrum stopped reading, stared blankly and was unresponsive.?Once the electrode was removed, the patient resumed reading and could not remember the events of being dazed.[9]

A 2019 study consisting of electrical stimulation of the claustrum found no disruption of consciousness in any of the five patients that were subjected to the analysis. The tested patients reported subjective experiences in various sensory domains and exhibited reflexive movement, but none of them displayed loss of consciousness, thus questioning the claustrum's ability to disrupt consciousness when stimulated electrically.[32]

A 2020 study involving artificial activation of the claustrum by optogenetic light stimulation silenced brain activity across the cortex, a phenomenon known as a "Down state," which can be seen when mice are sleeping or resting awake (quiet wakefulness).[33]?The authors state that 'The claustrum is a coordinator of global slow-wave activity, and it is so exciting that we are getting closer to linking specific brain connections and actions with the ultimate puzzle of consciousness.'

Parkinsonism[edit]

A team of investigators led by neuroscientists at Beth Israel Deaconess Medical Center has identified the claustrum as the likely origin of parkinsonism across different conditions. The team used a novel methodology called lesion network mapping to discover the origins of parkinsonism in 29 patients whose symptoms were not the result of Parkinson’s disease but rather attributed to a brain lesion – an abnormality or injury to the brain visible on brain imaging. The mapping of the 29 lesions – which were located in different regions of the brain – revealed that connectivity to the claustrum was the single most sensitive and specific marker of lesion-induced parkinsonism.[34]

Other animals[edit]

In animals, through tract tracing, findings have shown that the claustrum has extensive connections throughout the cortex with sensory and motor regions along with the hippocampus.[2]?A variety of animal models have been used such as cats, rodents and monkeys.

?

Anatomy of a cat brain

Monkeys[edit]

In the monkey, there are widespread connections of the claustrum with allocortical and neocortical regions. These connections project towards the frontal lobe, visual cortical regions, temporal cortex, parieto-occipital cortex and somatosensory areas amongst others.[1]?The subcortical areas receiving projections are the amygdala, caudate nucleus and hippocampus. It is unknown if there are cortical regions that do not receive input from the claustrum.?Additionally, large or small types of aspiny are reported in the monkey brain, which are classified as “l(fā)ocal circuit neurons".[5]

The dorsal claustrum has bi-directional connections with motor structures in the cortex.[1]?The relationship Between animal's movement and how neurons in the dorsocaudal claustrum behaves are as follows: 70% of movement neurons are non-selective and can fire to do any push, pulls or turn movements in the forelimb, the rest were more discerning and did only one of the three movements listed above.[1]




wiki筆記:Claustrum--2022/2/9的評論 (共 條)

分享到微博請遵守國家法律
麻江县| 聂拉木县| 阿克陶县| 无棣县| 安图县| 肇州县| 岢岚县| 乌兰浩特市| 茶陵县| 图们市| 无极县| 石狮市| 广丰县| 砀山县| 秦安县| 浙江省| 临夏县| 合水县| 开封县| 梓潼县| 柞水县| 河池市| 峨眉山市| 福泉市| 同江市| 涞源县| 武汉市| 海原县| 唐山市| 施秉县| 襄樊市| 文水县| 额济纳旗| 梁山县| 河津市| 文化| 师宗县| 宁乡县| 克什克腾旗| 曲周县| 措勤县|