最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

復(fù)旦大學(xué)謝啟鴻老師高等代數(shù)在線習(xí)題課 思考題分析與解 ep.47

2022-02-04 19:05 作者:CharlesMa0606  | 我要投稿

本文內(nèi)容主要有關(guān)于矩陣的Kroncker積,在高代白皮書上對應(yīng)第2.2.11節(jié)第6.2.4節(jié)

題目來自于復(fù)旦大學(xué)謝啟鴻教授在本站高等代數(shù)習(xí)題課的課后思考題,本文僅供學(xué)習(xí)交流

習(xí)題課視頻鏈接:復(fù)旦大學(xué)謝啟鴻高等代數(shù)習(xí)題課_嗶哩嗶哩_bilibili

本人解題水平有限,可能會有錯誤,懇請斧正!

祝大家新年快樂!

練習(xí)題1? 設(shè)A,B為矩陣(階數(shù)可不同),則A%5Cotimes%20B是行滿秩陣(列滿秩陣)的充要條件是A,B均為行滿秩陣(列滿秩陣).

證明? 設(shè)A,B分別為m%5Ctimes%20n階、k%5Ctimes%20l階矩陣,再考慮A,B的相抵標(biāo)準(zhǔn)型,存在非異陣P_1%2CQ_1%2CP_2%2CQ_2%2Cs.t.P_1AQ_1%3D%5Cleft(%5Cbegin%7Bmatrix%7DI_r%26O%5C%5CO%26O%5C%5C%5Cend%7Bmatrix%7D%5Cright)%2CP_2BQ_2%3D%5Cleft(%5Cbegin%7Bmatrix%7DI_s%26O%5C%5CO%26O%5C%5C%5Cend%7Bmatrix%7D%5Cright),并且

r%5Cleft(A%5Cotimes%20B%5Cright)%3Dr%5Cleft(%5Cleft(P_1%5Cotimes%20P_2%5Cright)%5Cleft(A%5Cotimes%20B%5Cright)%5Cleft(Q_1%5Cotimes%20Q_2%5Cright)%5Cright)%3Dr%5Cleft(%5Cleft(P_1AQ_1%5Cright)%5Cotimes%5Cleft(P_2BQ_2%5Cright)%5Cright)%3Drs

注意到r%5Cle%20m%2Cs%5Cle%20k,從而rs%5Cle%20mk,但A%5Cotimes%20B是行滿秩陣當(dāng)且僅當(dāng)rs%3Dmk,從而當(dāng)且僅當(dāng)A,B均為行滿秩陣.列滿秩的情況完全一致.

練習(xí)題2? 設(shè)A為數(shù)域F上的m階矩陣,B為數(shù)域F上的n階矩陣,V是F上m%5Ctimes%20n矩陣全體構(gòu)成的線性空間,V上的線性變換%5Cvarphi定義為:%5Cvarphi%5Cleft(X%5Cright)%3DAXB.設(shè)A的特征值為%5Clambda_i%5Cleft(i%3D1%2C%5Ccdots%2Cm%5Cright),矩陣B的特征值為%5Cmu_j%5Cleft(j%3D1%2C%5Ccdots%2Cn%5Cright).試求Ker%5Cvarphi的維數(shù)和一組基.

證明? 容易驗證線性變換%5Cvarphi定義為:%5Cvarphi%5Cleft(X%5Cright)%3DAXB在全體基礎(chǔ)矩陣%5C%7BE_%7B11%7D%2C%5Ccdots%2CE_%7Bmn%7D%5C%7D作為基時的表示矩陣為A%5Cotimes%20B%5E%5Cprime,從而易知dimKer%5Cvarphi%3Dmn-r%5Cleft(A%5Cright)r%5Cleft(B%5Cright). 考慮A,B的相抵標(biāo)準(zhǔn)型,存在非異陣P_1%2CQ_1%2CP_2%2CQ_2%2Cs.t.P_1AQ_1%3D%5Cleft(%5Cbegin%7Bmatrix%7DI_r%26O%5C%5CO%26O%5C%5C%5Cend%7Bmatrix%7D%5Cright)%2CP_2BQ_2%3D%5Cleft(%5Cbegin%7Bmatrix%7DI_s%26O%5C%5CO%26O%5C%5C%5Cend%7Bmatrix%7D%5Cright),于是

%5Cleft(P_1%5Cotimes%20P_2%5E%5Cprime%5Cright)%5Cleft(A%5Cotimes%20B%5Cright)%5Cleft(Q_1%5Cotimes%20Q_2%5E%5Cprime%5Cright)%3D%5Cleft(P_1AQ_1%5Cright)%5Cotimes%5Cleft(P_2BQ_2%5Cright)%3Ddiag%5C%7B%5Cleft(%5Cbegin%7Bmatrix%7DI_s%26O%5C%5CO%26O%5C%5C%5Cend%7Bmatrix%7D%5Cright)%2C%5Cleft(%5Cbegin%7Bmatrix%7DI_s%26O%5C%5CO%26O%5C%5C%5Cend%7Bmatrix%7D%5Cright)%2C%5Ccdots%2C%5Cleft(%5Cbegin%7Bmatrix%7DI_s%26O%5C%5CO%26O%5C%5C%5Cend%7Bmatrix%7D%5Cright)%5C%7D

利用解方程組的標(biāo)準(zhǔn)型即可得到基礎(chǔ)解系,從而構(gòu)成Ker\varphi的一組基.

練習(xí)題3(17級高代I期末考試第六大題)? 設(shè)A為數(shù)域F上的m階矩陣,B為數(shù)域F上的n階矩陣,V是F上m%5Ctimes%20n矩陣全體構(gòu)成的線性空間,V上的線性變換%5Cvarphi定義為:%5Cvarphi%5Cleft(X%5Cright)%3DAXB.設(shè)A的特征值為%5Clambda_i%5Cleft(i%3D1%2C%5Ccdots%2Cm%5Cright),矩陣B的特征值為%5Cmu_j%5Cleft(j%3D1%2C%5Ccdots%2Cn%5Cright).求證:%5Cvarphi是冪零線性變換當(dāng)且僅當(dāng)A,B中至少有一個是冪零陣.

證明? 注意到%5Cvarphi是冪零線性變換當(dāng)且僅當(dāng)%5Cvarphi的全體特征值為O,從而當(dāng)且僅當(dāng)%5Clambda_i%5Cmu_j%3D0恒成立,而這當(dāng)且僅當(dāng)%5Clambda_i全為0或者%5Cmu_j全為零,這當(dāng)且僅當(dāng)A是冪零陣或者B是冪零陣,因此%5Cvarphi是冪零線性變換當(dāng)且僅當(dāng)A,B中至少有一個是冪零陣.

練習(xí)題4? 設(shè)A為數(shù)域F上的m階矩陣,B為數(shù)域F上的n階矩陣,V是F上m%5Ctimes%20n矩陣全體構(gòu)成的線性空間,V上的線性變換%5Cvarphi定義為:%5Cvarphi%5Cleft(X%5Cright)%3DAX-XB.設(shè)A的特征值為%5Clambda_i%5Cleft(i%3D1%2C%5Ccdots%2Cm%5Cright),矩陣B的特征值為%5Cmu_j%5Cleft(j%3D1%2C%5Ccdots%2Cn%5Cright).證明:若A,B都是冪零陣,則%5Cvarphi是冪零線性變換.

證明? 容易驗證線性變換%5Cvarphi%5Cleft(X%5Cright)%3DAXB在全體基礎(chǔ)矩陣%5C%7BE_%7B11%7D%2C%5Ccdots%2CE_%7Bmn%7D%5C%7D作為基時的表示矩陣為A%5Cotimes%20I_n-I_m%5Cotimes%20B%5E%5Cprime,并且特征值為%5Clambda_i-%5Cmu_j,若A,B都是冪零陣,則%5Cvarphi的特征值全為0,從而%5Cvarphi是冪零線性變換.

練習(xí)題5? 設(shè)V為n階復(fù)方陣全體構(gòu)成的線性空間,V上的線性變換%5Cvarphi定義為%5Cvarphi%5Cleft(X%5Cright)%3DAX-XA,其中A%5Cin%20V.證明:%5Cvarphi是冪零線性變換的充要條件是存在%5Clambda_0%5Cin%20C,使得A-%5Clambda_0I_n是冪零陣.

證明? 容易驗證線性變換%5Cvarphi%5Cleft(X%5Cright)%3DAX-XA在全體基礎(chǔ)矩陣%5C%7BE_%7B11%7D%2C%5Ccdots%2CE_%7Bnn%7D%5C%7D作為基時的表示矩陣為A%5Cotimes%20I_n-I_n%5Cotimes%20A%5E%5Cprime,并且特征值為%5Clambda_i-%5Clambda_j,若%5Cvarphi是冪零線性變換,則%5Clambda_i%3D%5Clambda_j%2C%5Cforall1%5Cle%20i%2Cj%5Cle%20n,即A的全部特征值相同,從而存在%5Clambda_0%5Cin%20C,使得A-%5Clambda_0I_n是冪零陣.反過來,若存在%5Clambda_0%5Cin%20C,使得A-%5Clambda_0I_n是冪零陣,則說明A-%5Clambda_0I_n的特征值全為0,從而A的特征值全為%5Clambda_0,于是線性變換%5Cvarphi%5Cleft(X%5Cright)%3DAX-XA的全體特征值為0,這說明線性變換%5Cvarphi%5Cleft(X%5Cright)%3DAX-XA是冪零線性變換.

練習(xí)題6(19級高代II每周一題)? 設(shè)V為n階復(fù)方陣全體構(gòu)成的線性空間,V上的線性變換%5Cvarphi定義為%5Cvarphi%5Cleft(X%5Cright)%3DAX-XA%5E%5Cprime,其中A%5Cin%20V.證明:%5Cvarphi可對角化的充要條件是A可對角化.

證明? 容易驗證線性變換%5Cvarphi%5Cleft(X%5Cright)%3DAX-XA%5E%5Cprime在全體基礎(chǔ)矩陣%5C%7BE_%7B11%7D%2C%5Ccdots%2CE_%7Bnn%7D%5C%7D作為基時的表示矩陣為A%5Cotimes%20I_n-I_n%5Cotimes%20A.

先證充分性.設(shè)A可對角化,即存在非異陣P,使得P%5E%7B-1%7DAP%3D%5CLambda為對角陣,則容易驗證

%5Cleft(P%5Cotimes%20P%5Cright)%5E%7B-1%7D%5Cleft(A%5Cotimes%20I_n-I_n%5Cotimes%20A%5Cright)%5Cleft(P%5Cotimes%20P%5Cright)%3D%5CLambda%5Cotimes%20I_n-I_n%5Cotimes%5CLambda%3DO

從而A%5Cotimes%20I_n-I_n%5Cotimes%20A相似于對角陣,從而%5Cvarphi可對角化.

再證必要性,用反證法.設(shè)%5Cvarphi可對角化但A不可對角化,則A的Jordan標(biāo)準(zhǔn)型至少有一個二階以上的Jordan塊,不妨設(shè)為J_r%5Cleft(%5Clambda_0%5Cright)%5Cleft(r%5Cgeq2%5Cright),其對應(yīng)的基向量為%5Calpha_1%2C%5Calpha_2%2C%5Ccdots%2C%5Calpha_r%5Cin%20C%5En,滿足:

A%5Calpha_1%3D%5Clambda_0%5Calpha_1%2CA%5Calpha_2%3D%5Calpha_1%2B%5Clambda_0%5Calpha_2%2C%5Ccdots%2CA%5Calpha_r%3D%5Calpha_%7Br-1%7D%2B%5Clambda_0%5Calpha_r

設(shè)U%3DL%5Cleft(%5Calpha_i%5Ccdot%5Calpha_j%5E%5Cprime%2C1%5Cle%20i%2Cj%5Cle%20r%5Cright)%5Csubseteq%20V,則可證明U是%5Cvarphi不變子空間,并且利用每周一題問題[2021A08]的結(jié)論(復(fù)旦大學(xué)謝啟鴻高等代數(shù)每周一題[2021A08]參考解答 - 嗶哩嗶哩 (bilibili.com))可知%5C%7B%5Calpha_i%5Ccdot%5Calpha_j%5E%5Cprime%2C1%5Cle%20i%2Cj%5Cle%20r%5C%7D線性無關(guān),從而組成U的一組基.因為%5Cvarphi可對角化,故%5Cleft.%5Cvarphi%5Cright%7C_U也可以對角化,并且經(jīng)計算可知%5Cleft.%5Cvarphi%5Cright%7C_U在基%5C%7B%5Calpha_i%5Ccdot%5Calpha_j%5E%5Cprime%2C1%5Cle%20i%2Cj%5Cle%20r%5C%7D下的表示矩陣為J_r%5Cleft(%5Clambda_0%5Cright)%5Cotimes%20I_n-I_n%5Cotimes%20J_r%5Cleft(%5Clambda_0%5Cright),這個上三角矩陣的主對角元全為0并且應(yīng)當(dāng)可對角化,但是因為主對角線上方存在非零元素,所以不可對角化,矛盾!

練習(xí)題7? 設(shè)A,B分別為m,n階復(fù)方陣,C%3DA%5Cotimes%20I_n%2BI_m%5Cotimes%20B%EF%BC%8Cg%5Cleft(%5Clambda%5Cright)%3D%5Cleft%7C%5Clambda%20I_n%2BB%5Cright%7C.求證:C是非異陣當(dāng)且僅當(dāng)g(A)是非異陣.

證明? 先證充分性,設(shè)A的全體特征值為%5Clambda_1%2C%5Ccdots%2C%5Clambda_m,B的全體特征值為%5Cmu_1%2C%5Ccdots%2C%5Cmu_n.若g(A)是非異陣,說明g%5Cleft(%5Clambda_i%5Cright)%5Cneq0%2C%5Cforall1%5Cle%20i%5Cle%20m,從而A,-B'沒有公共特征值,注意到C的全體特征值為%5Clambda_i%2B%5Cmu_j,又A,-B'沒有公共特征值,從而C的特征值全部不為0,于是C是非異陣.

再證必要性,若C是非異陣,則%5Clambda_i%2B%5Cmu_j%5Cneq0%2C%5Cforall%20i%2Cj,從而A,-B'沒有公共特征值,從而g%5Cleft(%5Clambda_i%5Cright)%5Cneq0%2C%5Cforall1%5Cle%20i%5Cle%20m,從而g(A)是非異陣.

? 最近參加專欄的活動要求字?jǐn)?shù),所以我將練習(xí)題解答直接寫出,最后附上圖片格式的解答


復(fù)旦大學(xué)謝啟鴻老師高等代數(shù)在線習(xí)題課 思考題分析與解 ep.47的評論 (共 條)

分享到微博請遵守國家法律
称多县| 横峰县| 辉县市| 吴旗县| 宜章县| 庐江县| 桃江县| 牟定县| 福鼎市| 梁山县| 司法| 青龙| 扎鲁特旗| 噶尔县| 横山县| 齐齐哈尔市| 三明市| 同仁县| 甘德县| 尚义县| 寿阳县| 东阳市| 萨嘎县| 北京市| 武陟县| 沙田区| 同德县| 明光市| 安乡县| 呼图壁县| 金门县| 津市市| 治多县| 桐庐县| 珲春市| 华容县| 江川县| 珲春市| 樟树市| 绵阳市| 离岛区|