最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

實數(shù)的階乘——歐拉積分:Beta、Gamma函數(shù)

2021-12-22 00:13 作者:子瞻Louis  | 我要投稿

歐拉積分是跟一個序列插值問題密切相關(guān)的:即階乘序列

所謂序列插值,就是將通項公式的定義從整數(shù)集延拓到實數(shù)集

1728年,哥德巴赫在考慮序列插值的問題,當(dāng)他開始處理階乘時,被這玩意給難住了,

手繪的曲線

可以發(fā)現(xiàn)似乎確實存在一條光滑的曲線能將階乘對應(yīng)的點連接起來,但是哥德巴赫無法解決階乘這個問題,于是寫信給了尼古拉一世·伯努利(NikolausI?Bernoulli)和他的弟弟丹尼爾(Daniel?Bernoulli),而當(dāng)時歐拉(Leonhard?Euler)他倆在一塊,因此他也得知了這個問題,最后他在1729年完美地解決了這個問題

這便是今天要說到的歐拉積分了:(勒讓德的提法)

B(p%2Cq)%3D%5Cint_%7B0%7D%5E1x%5E%7Bp-1%7D(1-x)%5E%7Bq-1%7D%5Cmathrm%20dx

%5CGamma(s)%3D%5Cint_0%5E%5Cinfty%20x%5E%7Bs-1%7De%5E%7B-x%7D%5Cmathrm%20dx

第一個積分也稱為beta函數(shù),第二個特別特別常用的積分也稱為Gamma函數(shù)

(ps:本文中的beta,Gamma函數(shù)的變量都是實數(shù),但是需要注意的是它們更廣泛的應(yīng)用都一定會涉及到變量為復(fù)數(shù)的情況)

歐拉第一類積分

這個積分下限是0,因此收斂的充要條件是p>0,類似地,上限是1收斂的充要條件是q>0,

所以beta函數(shù)是在p,q都>0時才有定義,

  1. 在beta函數(shù)的積分中作變量代換x%3D1-t,可得其對成性:

    %5Cbegin%7Baligned%7DB(p%2Cq)%26%3D%5Cint_%7B0%7D%5E1x%5E%7Bp-1%7D(1-x)%5E%7Bq-1%7D%5Cmathrm%20dx%20%5C%5C%20%26%3D%5Cint_%7B0%7D%5E1(1-t)%5E%7Bp-1%7Dt%5E%7Bq-1%7D%5Cmathrm%20dx%3DB(q%2Cp)%5Cend%7Baligned%7D

  2. 作代換x%3D%5Cfrac%20y%7B1%2By%7D,可得它另一種積分表達(dá)式:

    %5Cbegin%7Baligned%7DB(p%2Cq)%26%3D-%5Cint_%5Cinfty%5E0%20%5Cfrac%7By%5E%7Bp-1%7D%7D%7B(1%2By)%5E%7Bp-1%7D%7D%5Ccdot%5Cfrac%7B1%7D%7B(1%2By)%5E%7Bq-1%7D%7D%5Ccdot%5Cfrac%7B1%7D%7B(1%2By)%5E2%7D%5Cmathrm%20dy%20%5C%5C%20%26%20%3D%5Cint_0%5E%5Cinfty%20%5Cfrac%7By%5E%7Bp-1%7D%7D%7B(1%2By)%5E%7Bp%2Bq%7D%7D%5Cmathrm%20dy%5Cend%7Baligned%7D

  3. 又又作代換x%3D%5Csin%5E2%5Calpha,又得到了:

    %5Cbegin%7Baligned%7DB(p%2Cq)%26%3D%5Cint_0%5E%7B%5Cpi%2F2%7D%5Csin%5E%7B2p-2%7D%5Calpha(1-%5Csin%5E2%5Calpha)%5E%7Bq-1%7D%5Ccdot2%5Csin%5Calpha%5Ccos%5Calpha%5Cmathrm%20d%5Calpha%20%5C%5C%26%3D2%5Cint_0%5E%7B%5Cpi%2F2%7D%5Csin%5E%7B2p-1%7D%5Calpha%5Ccos%5E%7B2q-1%7D%5Calpha%5Cmathrm%20d%5Calpha%5Cend%7Baligned%7D

根據(jù)第二個積分表達(dá)式,利用分部積分法可得一下遞推公式

%5Cbegin%7Baligned%7DB(p%2B1%2Cq)%26%3D%5Cint_0%5E%5Cinfty%20%5Cfrac%7By%5E%7Bp%7D%7D%7B(1-y)%5E%7Bp%2Bq%2B1%7D%7D%5Cmathrm%20dy%20%5C%5C%26%3D-%5Cfrac1%7Bp%2Bq%7D%5Cint_0%5E%5Cinfty%20y%5E%7Bp%7D%5Cmathrm%20d%5Cfrac%7B1%7D%7B(1-y)%5E%7Bp%2Bq%7D%7D%20%5C%5C%26%3D%5Cfrac1%7Bp%2Bq%7D%5Cint_0%5E%5Cinfty%20%5Cfrac%7B1%7D%7B(1-y)%5E%7Bp%2Bq%7D%7D%5Cmathrm%20dy%5Ep%20%5C%5C%26%3D%5Cfrac%20p%7Bp%2Bq%7D%5Cint_0%5E%5Cinfty%20%5Cfrac%7By%5E%7Bp-1%7D%7D%7B(1-y)%5E%7Bp%2Bq%7D%7D%5Cmathrm%20dy%3D%5Cfrac%20p%7Bp%2Bq%7DB(p%2Cq)%5Cend%7Baligned%7D

  • B(p%2B1%2Cq)%3D%5Cfrac%20p%7Bp%2Bq%7DB(p%2Cq)

當(dāng)n為整數(shù)時,由遞推公式,有

%5Cbegin%7Baligned%7Dn%5E%5Calpha%20B(n%2C%5Calpha)%26%3Dn%5E%5Calpha%5Cfrac%7Bn-1%7D%7B%5Calpha%2Bn-1%7DB(n-1%2C%5Calpha)%5C%5C%26%3Dn%5E%5Calpha%5Cfrac%7B(n-2)(n-1)%7D%7B(%5Calpha%2Bn-2)(%5Calpha%2Bn-1)%7DB(n-2%2C%5Calpha)%20%5C%5C%26%3D%E2%80%A6%3Dn%5E%5Calpha%5Cfrac%7B1%5Ccdot2%E2%80%A6(n-1)%7D%7B(%5Calpha%2B1)%E2%80%A6(%5Calpha%2Bn-1)%7DB(1%2C%5Calpha)%5C%5C%26%3D%5Cfrac%7Bn%5E%5Calpha%5Ccdot1%5Ccdot2%E2%80%A6(n-1)%7D%7B%5Calpha(%5Calpha%2B1)%E2%80%A6(%5Calpha%2Bn-1)%7D%5Cend%7Baligned%7D

n%5Crightarrow%20%5Cinfty,可得高斯公式(Gauss Formula):

%5CPi(%5Calpha)%3D%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7Bn%5E%5Calpha%5Ccdot1%5Ccdot2%E2%80%A6(n-1)%7D%7B%5Calpha(%5Calpha%2B1)%E2%80%A6(%5Calpha%2Bn-1)%7D

我們來驗證當(dāng)%5Calpha非負(fù)整數(shù)時它其實就是階乘:

首先有%5CPi(1)%3D0!%3D1

又有(α>0):

%5Cbegin%7Baligned%7D%5CPi(%5Calpha%2B1)%26%3D%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7Bn%5E%7B%5Calpha%2B1%7D%5Ccdot1%5Ccdot2%E2%80%A6(n-1)%7D%7B(%5Calpha%2B1)(%5Calpha%2B2)%E2%80%A6(%5Calpha%2Bn)%7D%5C%5C%20%26%3D%5Calpha%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7Bn%5E%7B%5Calpha%2B1%7D%5Ccdot1%5Ccdot2%E2%80%A6(n-1)%7D%7B%5Calpha(%5Calpha%2B1)%E2%80%A6(%5Calpha%2Bn)%7D%5C%5C%26%3D%5Calpha%5CPi(%5Calpha)%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7Bn%7D%7B%5Calpha%2Bn%7D%3D%5Calpha%5CPi(%5Calpha)%5Cend%7Baligned%7D

  • %5CPi(%5Calpha%2B1)%3D%5Calpha%5CPi(%5Calpha)

因此%5CPi(n%2B1)%3Dn!%2Cn%5Cin%5Cmathbb%20N

而當(dāng)把變量換成正實數(shù)時,仍然滿足遞推性質(zhì),所以它作為階乘的延拓是良好定義的

第二類歐拉積分

在下面的公式中作代換x%3Dnu,根據(jù)beta函數(shù)的遞推公式,有

%5Cbegin%7Baligned%7D%5CPi(n%2Cs)%26%3D%5Cint_0%5Enx%5E%7Bs-1%7D%5Ccolor%7Bblue%7D%7B%5Cleft(1-%5Cfrac%20xn%5Cright)%5E%7Bn%7D%7D%5Cmathrm%20dx%5C%5C%20%26%3Dn%5Es%5Cint_0%5E1u%5E%7Bs-1%7D%5Cleft(1-u%5Cright)%5E%7Bn%7D%5Cmathrm%20du%20%5C%5C%26%3Dn%5EsB(n%2B1%2Cs)%5C%5C%26%3D%5Cfrac%7Bn%5Es%5Ccdot1%5Ccdot2%E2%80%A6n%7D%7Bs(s%2B1)%E2%80%A6(s%2Bn)%7D%5Cend%7Baligned%7D

以我們熟知的藍(lán)色部分當(dāng)n%5Crightarrow%20%5Cinfty時一致收斂到e%5E%7B-u%7D,而最下面的乘積則收斂到%5CPi(s),又不難驗證該函數(shù)到Gamma函數(shù),于是

%5CGamma(s)%3D%5CPi(s)

因此,有以下性質(zhì)

  • %5CGamma(1)%3D0!%3D1

  • %5CGamma(s%2B1)%3Ds%5CGamma(s)

  • %5CGamma(n%2B1)%3Dn!%2Cn%5Cin%5Cmathbb%20N

  • %5CGamma(s)%3D%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7Bn%5Es%5Ccdot1%5Ccdot2%E2%80%A6(n-1)%7D%7Bs(s%2B1)%E2%80%A6(s%2Bn-1)%7D

在積分中作代換x%3Du%5E2,有Gamma函數(shù)的另一積分表達(dá)式為:

  • %5Cbegin%7Baligned%7D%5CGamma(s)%3D2%5Cint_0%5E%5Cinfty%20x%5E%7B2s-1%7De%5E%7B-x%5E2%7D%5Cmathrm%20dx%5Cend%7Baligned%7D

又作代換x%3Du%5En,又有積分表式為:

  • %5Cbegin%7Baligned%7D%5CGamma(s)%3Dn%5Cint_0%5E%5Cinfty%20x%5E%7Bns-1%7De%5E%7B-x%5En%7D%5Cmathrm%20dx%5Cend%7Baligned%7D

也許有的人看到積分中減了個1會有些疑惑,為什么不直接定義

%5CGamma(s)%3D%5Cint_0%5E%5Cinfty%20x%5E%7Bs%7De%5E%7B-x%7D%5Cmathrm%20dx

呢?這樣既好看了些,還能在s是整數(shù)時直接有%5CGamma(s)%3Ds!我說如果這樣想的話那你就格局小了(被打),其實不難發(fā)現(xiàn)上面這個積分右邊僅僅在s>-1時才收斂,數(shù)學(xué)家們不太喜歡這樣的收斂域,而正好-1這種用法十九世紀(jì)末期在法國十分流行,于是當(dāng)時由勒讓德(Legendre)介紹了Gamma(s)=(s-1)!,這樣收斂范圍變成了s>0,這樣的收斂域既省事又挺美觀

beta函數(shù)與Gamma之間函數(shù)的聯(lián)系

設(shè)y%EF%BC%9E0,通過變量代換u%3Dxy,有以下等式:

%5Cbegin%7Baligned%7D%5Cint_0%5E%5Cinfty%20x%5E%7B%5Calpha-1%7De%5E%7B-xt%7D%5Cmathrm%20dx%26%3D%5Cfrac1%20%7Bt%5E%7B%5Calpha%7D%7D%5Cint_0%5E%5Cinfty%20u%5E%7B%5Calpha-1%7De%5E%7B-u%7D%5Cmathrm%20du%3D%5Cfrac1%7Bt%5E%5Calpha%7D%5CGamma(%5Calpha)%5Cend%7Baligned%7D

t%3D1%2By%2C%5Calpha%3Dp%2Bq%2C(p%2Cq%EF%BC%9E0),則有

%5Cfrac%7B%5CGamma(p%2Bq)%7D%7B(1%2By)%5E%7Bp%2Bq%7D%7D%3D%5Cint_0%5E%5Cinfty%20x%5E%7Bp%2Bq-1%7De%5E%7B-x(1%2By)%7D%5Cmathrm%20dx

用上式和beta函數(shù)的第二積分表式,有

%5Cbegin%7Baligned%7D%5CGamma(p%2Bq)B(p%2Cq)%26%3D%5Cint_0%5E%5Cinfty%20y%5E%7Bp-1%7D%5Ccolor%7Bgreen%7D%7B%5Cfrac%7B%5CGamma(p%2Bq)%7D%7B(1%2By)%5E%7Bp%2Bq%7D%7D%7D%5Cmathrm%20dy%20%5C%5C%26%3D%5Cint_0%5E%5Cinfty%20y%5E%7Bp-1%7D%5Ccolor%7Bgreen%7D%7B%5Cint_0%5E%5Cinfty%20x%5E%7Bp%2Bq-1%7De%5E%7B-x(1%2By)%7D%5Cmathrm%20dx%7D%5Cmathrm%20dy%5C%5C%26%3D%5Cint_0%5E%5Cinfty(xy)%5E%7Bp-1%7De%5E%7B-xy%7D%5Cmathrm%20d(xy)%5Cint_0%5E%5Cinfty%20x%5E%7Bq-1%7De%5E%7B-x%7D%5Cmathrm%20dx%5C%5C%26%3D%5CGamma(p)%5CGamma(q)%5Cend%7Baligned%7D

可以互換積分次序是由于p%2Cq%EF%BC%9E0時上述積分處處收斂

  • B(p%2Cq)%3D%5Cfrac%7B%5CGamma(p)%5CGamma(q)%7D%7B%5CGamma(p%2Bq)%7D

本期就先到此結(jié)束了,稍微氵了點hhh,下一期就是有關(guān)Gamma函數(shù)的幾個公式了

實數(shù)的階乘——歐拉積分:Beta、Gamma函數(shù)的評論 (共 條)

分享到微博請遵守國家法律
庄河市| 吉林市| 晴隆县| 五台县| 改则县| 东安县| 漾濞| 乌苏市| 怀来县| 从江县| 教育| 青河县| 阜南县| 沁源县| 平度市| 河池市| 平舆县| 通渭县| 利川市| 金溪县| 三门峡市| 垫江县| 隆尧县| 肃南| 贺州市| 江华| 闵行区| 乌海市| 沛县| 都匀市| 高尔夫| 庆安县| 垫江县| 天镇县| 崇左市| 西青区| 尖扎县| 饶河县| 崇义县| 桦川县| 石嘴山市|