最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

2022年高考全國(guó)甲卷&新高考Ⅱ卷導(dǎo)數(shù)大題

2022-06-09 12:34 作者:子瞻Louis  | 我要投稿

今年高考題想必大家都已經(jīng)看過(guò)了,up只看了導(dǎo)數(shù)題,然后挑了兩個(gè)簡(jiǎn)單的做了一下,就是全國(guó)甲卷的和新高考Ⅱ卷的。

其實(shí)今年甲卷的導(dǎo)數(shù)題難度并不大,只不過(guò)一開始up也沒(méi)想到方法,看了別人的提示后才做出來(lái)。那么本期就來(lái)詳細(xì)解析一下今年的全國(guó)甲卷和新高考Ⅱ卷的導(dǎo)數(shù)題吧

全國(guó)甲卷

題目:已知?f(x)%3D%5Cfrac%7Be%5Ex%7D%7Bx%7D-%5Cln%20x%2Bx-a

  1. 若?f(x)%5Cge0?,求?a?的范圍;

  2. 若?f(x)?有兩個(gè)不同的零點(diǎn)?x_1%2Cx_2?,求證?x_1x_2%3C1?.

讀者可以先試著自己做一做


那么,下面正式開始了

第一問(wèn)

這一問(wèn)沒(méi)什么難度,先求導(dǎo),得

f'(x)%3D%5Cfrac%7B(x-1)e%5Ex%7D%7Bx%5E2%7D-%5Cfrac1x%2B1

令?f'(x)%3D0?,得

(x-1)(e%5Ex%2Bx)%3D0

即解得?x%3D1?,又由于 f''(1)%3De%2B1%3E0?,所以 f(x)%5Cge%20f(1)%3De%2B1-a%5Cge0?,因此?a%5Cle%20e%2B1?.

第二問(wèn)

首先不妨假設(shè) x_1%3Ex_2 ,引入一個(gè)熟知的不等式,叫做對(duì)數(shù)均值不等式(ALG inequality)

%5Csqrt%7Bx_1x_2%7D%3C%5Cfrac%7Bx_1-x_2%7D%7B%5Cln%20x_1-%5Cln%20x_2%7D

作為一名善良的人道主義者(霧),這里還是會(huì)先證明這個(gè)不等式,令?z%3D%5Cfrac%7Bx_1%7D%7Bx_2%7D%3E1?,可以將上式轉(zhuǎn)化為證明

g(z)%3D%5Csqrt%20z-%5Cfrac1%7B%5Csqrt%20z%7D-%5Cln%20z%3E0

由于?

%5Cbegin%7Balign%7Dg'(z)%26%3D%5Cfrac1%7B2%5Csqrt%20z%7D%2B%5Cfrac1%7B2%5Csqrt%7Bz%5E3%7D%7D-%5Cfrac1z%5C%5C%26%3D%5Cfrac1%7B2z%7D%5Cleft(%5Csqrt%20z%2B%5Cfrac1%7B%5Csqrt%20z%7D-2%5Cright)%5Cge0%5Cend%7Balign%7D

上式僅當(dāng)?z%3D1?時(shí)取等,因此??g(z)%5Cge%20g(1)%3D0?,而?z%3E1?,所以 g(z)%3E0?,然后就完成了對(duì)數(shù)均值不等式的證明?,F(xiàn)在回到題目,有

%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Brcl%7D%20%5Cfrac%7Be%5E%7Bx_1%7D%7D%7Bx_1%7D-%5Cln%20x_1%2Bx_1%3Da%5C%5C%5Cfrac%7Be%5E%7Bx_2%7D%7D%7Bx_2%7D-%5Cln%20x_2%2Bx_2%3Da%20%5Cend%7Barray%7D%5Cright.

由此可得

%5Cfrac%7Be%5E%7Bx_1%7D%7D%7Bx_1%7D-%5Cln%20x_1%2Bx_1%3D%5Cfrac%7Be%5E%7Bx_2%7D%7D%7Bx_2%7D-%5Cln%20x_2%2Bx_2

稍微變換一下,得到

e%5E%7B%5Ccolor%7Bred%7D%7Bx_1-%5Cln%20x_1%7D%7D%2B%5Ccolor%7Bred%7D%7Bx_1-%5Cln%20x_1%7D%3De%5E%7B%5Ccolor%7Bblue%7D%7Bx_2-%5Cln%20x_2%7D%7D%2B%5Ccolor%7Bblue%7D%7Bx_2-%5Cln%20x_2%7D

根據(jù)?e%5Ex%2Bx?的單調(diào)性可知

x_1-%5Cln%20x_1%3Dx_2-%5Cln%20x_2

由此可得

x_1x_2%3C%5Cleft(%5Cfrac%7Bx_1-x_2%7D%7B%5Cln%20x_1-%5Cln%20x_2%7D%5Cright)%5E2%3D1

Q.E.D.


嗯,相信讀者看完后也會(huì)覺(jué)得很簡(jiǎn)單吧。那么不妨再來(lái)看一道題吧


新高考Ⅱ卷

題目:已知?f(x)%3Dxe%5E%7Bax%7D-e%5Ex

  1. 當(dāng)?a%3D1?時(shí),討論?f(x)?的單調(diào)性;

  2. 當(dāng)?x%3E0?時(shí),若?f(x)%3C-1?,求?a?的范圍

  3. 設(shè)?n?為正整數(shù),求證?%5Cfrac1%7B%5Csqrt%7B1%5E2%2B1%7D%7D%2B%5Cfrac1%7B%5Csqrt%7B2%5E2%2B2%7D%7D%2B%5Cdots%2B%5Cfrac1%7B%5Csqrt%7Bn%5E2%2Bn%7D%7D%3E%5Cln(n%2B1)

同樣,讀者可以先試著自己做一做


第一問(wèn)

直接導(dǎo),得

f'(x)%3Dxe%5Ex

顯然當(dāng)?x%3E0?時(shí) f(x)?單調(diào)遞增,x%3C0?時(shí)單調(diào)遞減,有極小值?f(0)%3D-1

第二問(wèn)(非常規(guī)解法)

此方法千萬(wàn)不能在高考使用

先分參,得

a%3C%5Cfrac%7B%5Cln(e%5Ex-1)-%5Cln%20x%7D%7Bx%7D%3Dg(x)

將它稍微改寫一下

%5Cbegin%7Baligned%7Dg(x)%26%3D1%2B%5Cfrac1x%5Cint_0%5Ex%5Cleft(%5Cfrac%7B1%7D%7Be%5Et-1%7D-%5Cfrac1t%5Cright)%5Cmathrm%20dt%5C%5C%26%3D1%2B%5Cint_0%5E1%5Cleft(%5Cfrac1%7Be%5E%7Bxt%7D-1%7D-%5Cfrac1%7Bxt%7D%5Cright)%5Cmathrm%20dt%5Cend%7Baligned%7D

求導(dǎo),得

g'(x)%3D%5Cint_0%5E1t%5Cleft%5C%7B%5Cfrac1%7Bx%5E2t%5E2%7D-%5Cfrac%7Be%5E%7Bxt%7D%7D%7B(e%5E%7Bxt%7D-1)%5E2%7D%5Cright%5C%7D%5Cmathrm%20dt%3D%5Cint_0%5E1%20tp(xt)%5Cmathrm%20dt

其中

p(z)%3D%5Cfrac1%7Bz%5E2%7D-%5Cfrac%7Be%5E%7Bz%7D%7D%7B(e%5E%7Bz%7D-1)%5E2%7D

有?p(z)%5Cge0%5Cquad(z%3E0)%20%5CRightarrow%20g'(x)%5Cge0%5Cquad(x%3E0)?,因此欲證?g'(x)%5Cge0 只需證明

%5Cfrac%7Be%5Ez-1%7Dz%5Cge%20e%5E%7Bz%2F2%7D

將它們展開為冪級(jí)數(shù),即可得

%5Cbegin%7Balign%7D%5Cfrac%20%7Be%5Ez-1%7Dz-e%5E%7Bz%2F2%7D%26%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%20%5Cfrac%7Bz%5En%7D%7B(n%2B1)!%7D-%5Csum_%7Bn%3D0%7D%5E%5Cinfty%20%5Cfrac%7Bz%5En%7D%7B2%5En%5Ccdot%20n!%7D%5C%5C%26%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cleft(%5Cfrac1%7Bn%2B1%7D-%5Cfrac1%7B2%5En%7D%5Cright)%5Cfrac%7Bz%5En%7D%7Bn!%7D%5Cend%7Balign%7D

因?yàn)?n%5Cge1?時(shí)總有 2%5En%5Cge%20n%2B1?,因此 z%5Cge0?時(shí) p(z)%5Cge0?,z%3D0?時(shí)取等,也就是說(shuō)?a?需要小于等于?g(x) 在?x%5Cto0%5E%2B?時(shí)的極限,有

%5Cbegin%7Baligned%7D%5Clim_%7Bx%5Cto0%5E%2B%7D%5Cfrac%7B%5Cln(e%5Ex-1)-%5Cln%20x%7D%7Bx%7D%26%3D%5Clim_%7Bx%5Cto0%5E%2B%7D%5Cfrac%7B%5Cln(1%2B%5Cfrac12x%2Bo(x%5E2))%7D%7Bx%7D%5C%5C%26%3D%5Clim_%7Bx%5Cto0%5E%2B%7D%5Cfrac%7B%5Cfrac12x%2Bo(x%5E2)%7D%7Bx%7D%3D%5Cfrac12%5Cend%7Baligned%7D

所以?a%5Cle%5Cfrac12

第三問(wèn)

首先還是先引入一個(gè)不等式,即?x%3E0?時(shí)

%5Cfrac%20x%7B%5Csqrt%7B1%2Bx%7D%7D%3E%5Cln(1%2Bx)

那么,作為人道主義的善良的我當(dāng)然會(huì)給出它的證明了,令?y%3D%5Csqrt%7Bx%2B1%7D%3E1?,則上式轉(zhuǎn)化為證明

p(y)%3D2y%5Cln%20y-y%5E2%2B1%3C0

對(duì)它求導(dǎo)得

p'(y)%3D2(%5Cln%20y-y)%2B2%3C%20-2%2B2%3D0

因此?p(y)%3Cp(1)%3D0?,即得證上述不等式,對(duì)正整數(shù) k ,將 x%3D%5Cfrac1k?代入,得

%5Cfrac1%7B%5Csqrt%7Bk%5E2%2Bk%7D%7D%3D%5Cfrac1%7Bk%5Csqrt%7B1%2B%5Cfrac1k%7D%7D%3E%5Cln%5Cleft(1%2B%5Cfrac1k%5Cright)

然后從1到n求和,即可得

%5Cfrac1%7B%5Csqrt%7B1%5E2%2B1%7D%7D%2B%5Cfrac1%7B%5Csqrt%7B2%5E2%2B2%7D%7D%2B%5Cdots%2B%5Cfrac1%7B%5Csqrt%7Bn%5E2%2Bn%7D%7D%3E%5Cln(n%2B1)

Q.E.D.

%5Csquare

有一說(shuō)一這個(gè)第三問(wèn)我完全看不出跟題干有什么關(guān)系

那么本期專欄就到這結(jié)束了,溜了溜了


2022年高考全國(guó)甲卷&新高考Ⅱ卷導(dǎo)數(shù)大題的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
盖州市| 车险| 武平县| 新河县| 莱州市| 车险| 邵东县| 台东县| 乐都县| 江孜县| 名山县| 泰和县| 香港 | 监利县| 隆化县| 崇仁县| 望都县| 新绛县| 南开区| 吐鲁番市| 来宾市| 茂名市| 阳江市| 应城市| 富民县| 无棣县| 涡阳县| 石棉县| 胶州市| 股票| 巧家县| 柳林县| 仙游县| 深圳市| 星子县| 昌图县| 普陀区| 忻城县| 湘阴县| 互助| 泊头市|