最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

單擺周期公式

2021-10-27 00:56 作者:偏謬Lyx  | 我要投稿

單擺的運(yùn)動(dòng)方程如下,

%5Cfrac%7B%5Cmathrm%7Bd%7D%5E2%20%5Ctheta%7D%7B%5Cmathrm%7Bd%7Dt%5E2%7D%20%2B%20%5Comega%5E2%20%5Csin%5Ctheta%20%3D%200

其中?%5Comega%20%3D%20%5Csqrt%7Bg%2Fl%7D?,l? 為擺長(zhǎng)。一般在討論小角擺動(dòng)時(shí),我們會(huì)近似認(rèn)為?%5Csin%5Ctheta%20%5Capprox%20%5Ctheta,從而簡(jiǎn)化成簡(jiǎn)諧運(yùn)動(dòng)的方程。但本文選擇嚴(yán)格求解原方程。

首先,兩邊同乘以?2%20%5Ctheta'(t),

2%5Cfrac%7B%5Cmathrm%7Bd%7D%5Ctheta%7D%7B%5Cmathrm%7Bd%7Dt%7D%20%5Cfrac%7B%5Cmathrm%7Bd%7D%5E2%20%5Ctheta%7D%7B%5Cmathrm%7Bd%7Dt%5E2%7D%20%2B%202%20%5Comega%5E2%20%5Csin%5Ctheta%20%5Cfrac%7B%5Cmathrm%7Bd%7D%5Ctheta%7D%7B%5Cmathrm%7Bd%7Dt%7D%20%3D%200

上式可以寫(xiě)成全導(dǎo)數(shù)的形式,

%5Cfrac%7B%5Cmathrm%7Bd%7D%7D%7B%5Cmathrm%7Bd%7Dt%7D%20%5Cleft%5B%20%5Cleft(%20%5Cfrac%7B%5Cmathrm%7Bd%7D%5Ctheta%7D%7B%5Cmathrm%7Bd%7Dt%7D%20%5Cright)%5E2%20-%202%5Comega%5E2%20%5Ccos%5Ctheta%20%5Cright%5D%20%3D%200

這樣就能輕松完成第一次積分,

%5Cleft(%20%5Cfrac%7B%5Cmathrm%7Bd%7D%5Ctheta%7D%7B%5Cmathrm%7Bd%7Dt%7D%20%5Cright)%5E2%20-%202%5Comega%5E2%20%5Ccos%20%5Ctheta%20%3D%20C

假設(shè)單擺是從?%5Ctheta%20%3D%20%5Ctheta_0?處自由釋放,即初始條件為,%5Ctheta(0)%3D%5Ctheta_0%5Ctheta'(0)%3D0,由此可以定出積分常數(shù),

C%20%3D%20-2%5Comega%5E2%20%5Ccos%20%5Ctheta_0

代回方程可得,

%5Cbegin%7Bsplit%7D%0A%5Cleft(%20%5Cfrac%7B%5Cmathrm%7Bd%7D%5Ctheta%7D%7B%5Cmathrm%7Bd%7Dt%7D%20%5Cright)%5E2%20%26%3D%202%5Comega%5E2%20%5Cleft(%20%5Ccos%20%5Ctheta%20-%20%5Ccos%20%5Ctheta_0%20%5Cright)%20%5C%5C%0A%26%3D%204%5Comega%5E2%20%5Cleft(%20%5Csin%5E2%20%5Cfrac%7B%5Ctheta_0%7D%7B2%7D%20-%20%5Csin%5E2%20%5Cfrac%7B%5Ctheta%7D%7B2%7D%20%5Cright)%20%0A%5Cend%7Bsplit%7D

開(kāi)根整理后變?yōu)椋?/p>

2%5Comega%20%5C%2C%5Cmathrm%7Bd%7Dt%20%3D%20%5Cfrac%7B%5Cmathrm%7Bd%7D%5Ctheta%7D%7B%5Csqrt%7Bk%5E2%20-%20%5Csin%5E2%20%5Cfrac%7B%5Ctheta%7D%7B2%7D%7D%7D

其中?k%20%3D%20%5Csin%20%5Cfrac%7B%5Ctheta_0%7D%7B2%7D。由對(duì)稱(chēng)性可知,單擺從最低點(diǎn)到達(dá)最高點(diǎn)的時(shí)間為 1%2F4?個(gè)周期,我們選擇這段運(yùn)動(dòng)進(jìn)行積分,

2%5Comega%20%5Cint_0%5E%7BT%2F4%7D%20%5Cmathrm%7Bd%7Dt%20%3D%20%5Cint_0%5E%7B%5Ctheta_0%7D%20%5Cfrac%7B%5Cmathrm%7Bd%7D%5Ctheta%7D%7B%5Csqrt%7Bk%5E2%20-%20%5Csin%5E2%20%5Cfrac%7B%5Ctheta%7D%7B2%7D%7D%7D

%5Csin%20x%3D%20%5Cfrac%7B1%7D%7Bk%7D%20%5Csin%20%5Cfrac%7B%5Ctheta%7D%7B2%7D?,變換后 x?對(duì)應(yīng)的積分區(qū)間為?%5B0%2C%5Cpi%2F2%5D,對(duì)兩邊求微分,

%5Cbegin%7Bsplit%7D%0A%5Ccos%20x%20%5C%2C%5Cmathrm%7Bd%7Dx%20%26%3D%20%5Cfrac%7B1%7D%7B2k%7D%20%5Ccos%20%5Cfrac%7B%5Ctheta%7D%7B2%7D%20%5C%2C%5Cmathrm%7Bd%7D%5Ctheta%20%5C%5C%0A%26%3D%20%5Cfrac%7B1%7D%7B2k%7D%20%5Csqrt%7B1-%5Csin%5E2%20%5Cfrac%7B%5Ctheta%7D%7B2%7D%7D%20%5C%2C%5Cmathrm%7Bd%7D%5Ctheta%20%5C%5C%0A%26%3D%20%5Cfrac%7B1%7D%7B2k%7D%20%5Csqrt%7B1-%20k%5E2%5Csin%5E2%20x%7D%20%5C%2C%5Cmathrm%7Bd%7D%5Ctheta%0A%5Cend%7Bsplit%7D

整理可得,

%5Cmathrm%7Bd%7D%5Ctheta%20%3D%20%5Cfrac%7B2k%20%5Ccos%20x%7D%7B%5Csqrt%7B1-k%5E2%5Csin%5E2%20x%7D%7D%20%5C%2C%5Cmathrm%7Bd%7Dx

積分變?yōu)椋?/p>

%5Cbegin%7Bsplit%7D%0A%09%5Cfrac%7B%5Comega%20T%7D%7B2%7D%20%26%3D%20%5Cint_0%5E%7B%5Cpi%2F2%7D%20%5Cfrac%7B1%7D%7Bk%5Csqrt%7B1%20-%20%5Csin%5E2%20x%7D%7D%20%5Ccdot%20%5Cfrac%7B2k%20%5Ccos%20x%7D%7B%5Csqrt%7B1-k%5E2%5Csin%5E2%20x%7D%7D%20%5C%2C%5Cmathrm%7Bd%7Dx%20%5C%5C%0A%09%26%3D%202%20%5Cint_0%5E%7B%5Cpi%2F2%7D%20%5Cfrac%7B%5Cmathrm%7Bd%7Dx%7D%7B%5Csqrt%7B1-k%5E2%5Csin%5E2%20x%7D%7D%0A%5Cend%7Bsplit%7D

利用第一類(lèi)完全橢圓積分,

K(k)%20%3D%20%5Cint_0%5E%7B%5Cpi%2F2%7D%20%5Cfrac%7B%5Cmathrm%7Bd%7Dx%7D%7B%5Csqrt%7B1-k%5E2%5Csin%5E2%20x%7D%7D

可以把單擺的周期表示為,

T%20%3D%20%5Cfrac%7B4%7D%7B%5Comega%7D%20K(k)

利用級(jí)數(shù)展開(kāi),

%5Cbegin%7Bsplit%7D%0A%5Cfrac%7B1%7D%7B%5Csqrt%7B1-x%7D%7D%26%3D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%5Cfrac%7B(2n-1)!!%7D%7B(2n)!!%7D%5C%2Cx%5En%5C%5C%0A%26%3D1%2B%5Cfrac%7Bx%7D%7B2%7D%2B%5Cfrac%7B3x%5E2%7D%7B8%7D%20%2B%5Ccdots%0A%5Cend%7Bsplit%7D

將?K(k)?中的被積函數(shù)展開(kāi)為,

%5Cfrac%7B1%7D%7B%5Csqrt%7B1-k%5E2%5Csin%5E2%20x%7D%7D%20%3D%20%20%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7B(2n-1)!!%7D%7B(2n)!!%7D%20k%5E%7B2n%7D%20%5Csin%5E%7B2n%7Dx

于是問(wèn)題轉(zhuǎn)化成了對(duì)每一項(xiàng)的積分,

K(k)%20%3D%20%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7B(2n-1)!!%7D%7B(2n)!!%7D%20k%5E%7B2n%7D%20%5Cint_0%5E%7B%5Cpi%2F2%7D%20%5Csin%5E%7B2n%7Dx%20%5C%2C%5Cmathrm%7Bd%7Dx

詳細(xì)積分過(guò)程見(jiàn)后文附錄,其結(jié)果為,

%5Cint_0%5E%7B%5Cpi%2F2%7D%20%5Csin%5E%7B2n%7Dx%20%5C%2C%5Cmathrm%7Bd%7Dx%20%3D%20%5Cfrac%7B(2n-1)!!%7D%7B(2n)!!%7D%20%5Ccdot%20%5Cfrac%7B%5Cpi%7D%7B2%7D

于是,我們得到了第一類(lèi)完全橢圓積分的級(jí)數(shù)解,

K(k)%20%3D%20%5Cfrac%7B%5Cpi%7D%7B2%7D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20%5Cleft%5B%20%5Cfrac%7B(2n-1)!!%7D%7B(2n)!!%7D%20k%5En%20%5Cright%5D%5E2

代回周期公式,

%5Cbegin%7Bsplit%7D%0AT%26%3D%5Cfrac%7B2%5Cpi%7D%7B%5Comega%7D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%5Cleft%5B%5Cfrac%7B(2n-1)!!%7D%7B(2n)!!%7D%5Csin%5En%5Cfrac%7B%5Ctheta_0%7D%7B2%7D%5Cright%5D%5E2%5C%5C%0A%25%0A%26%3D%5Cfrac%7B2%5Cpi%7D%7B%5Comega%7D%5Cleft(1%2B%5Cfrac14%5Csin%5E2%5Cfrac%7B%5Ctheta_0%7D%7B2%7D%2B%5Cfrac%7B9%7D%7B64%7D%5Csin%5E4%5Cfrac%7B%5Ctheta_0%7D%7B2%7D%2B%5Ccdots%5Cright)%0A%5Cend%7Bsplit%7D

在小角近似下,只保留第一項(xiàng),

T%20%5Capprox%20%5Cfrac%7B2%5Cpi%7D%7B%5Comega%7D%20%3D%202%5Cpi%20%5Csqrt%7B%5Cfrac%7Bl%7D%7Bg%7D%7D

附錄

計(jì)算積分,

I_n%20%3D%20%5Cint_0%5E%7B%5Cpi%2F2%7D%20%5Csin%5En%20x%20%5C%2C%5Cmathrm%7Bd%7Dx

以下提供兩種求解方法。


1.?遞推公式

首先計(jì)算前兩項(xiàng),

%5Cbegin%7Balign%7D%0AI_0%26%3D%5Cint_0%5E%7B%5Cpi%2F2%7D%5Cmathrm%7Bd%7Dx%3D%5Cfrac%7B%5Cpi%7D%7B2%7D%5C%5C%0AI_1%26%3D%5Cint_0%5E%7B%5Cpi%2F2%7D%5Csin%7Bx%7D%5C%2C%5Cmathrm%7Bd%7Dx%3D1%0A%5Cend%7Balign%7D

對(duì)于?I_n?可進(jìn)行如下計(jì)算,

%5Cbegin%7Bsplit%7D%0A%20%20%20%20%20%20%20%20I_n%20%26%20%3D%20%5Cint_0%5E%7B%5Cpi%2F2%7D%20%5Csin%5En%20x%20%5C%2C%5Cmathrm%7Bd%7Dx%20%5C%5C%0A%20%20%20%20%20%20%20%20%26%20%3D%20-%5Cint_0%5E%7B%5Cpi%2F2%7D%20%5Csin%5E%7Bn-1%7D%20x%20%5C%2C%5Cmathrm%7Bd%7D%20(%5Ccos%20x)%0A%5Cend%7Bsplit%7D

利用分部積分,

%5Cbegin%7Bsplit%7D%0A%20%20%20%20%20%20%20%20I_n%20%26%3D%20-%20%5Cleft.%20%5Csin%5E%7Bn-1%7Dx%20%5Ccos%20x%20%5Cright%7C_0%5E%7B%5Cpi%2F2%7D%20%2B%20(n-1)%20%5Cint_0%5E%7B%5Cpi%2F2%7D%20%5Csin%5E%7Bn-2%7Dx%20%5Ccos%5E2%20x%20%5C%2C%5Cmathrm%7Bd%7Dx%20%5C%5C%0A%26%3D%20(n-1)%20%5Cint_0%5E%7B%5Cpi%2F2%7D%20%5Csin%5E%7Bn-2%7Dx%20%5Cleft(%201-%5Csin%5E2%20x%20%5Cright)%20%5Cmathrm%7Bd%7Dx%20%5C%5C%0A%26%3D%20(n-1)%20%5Cleft(I_%7Bn-2%7D-I_n%20%5Cright)%0A%5Cend%7Bsplit%7D

遞推公式為,

I_n%20%3D%20%5Cfrac%7Bn-1%7D%7Bn%7D%20I_%7Bn-2%7D

分奇偶討論,

%5Cbegin%7Balign%7D%0A%26I_%7B2n%2B1%7D%20%3D%20%5Cfrac%7B2n%7D%7B2n%2B1%7D%20%5Ccdot%20%5Cfrac%7B2n-2%7D%7B2n-1%7D%20%5Ccdots%20%5Cfrac%7B2%7D%7B3%7D%20%5Ccdot%20I_1%20%3D%20%20%5Cfrac%7B(2n)!!%7D%7B(2n%2B1)!!%7D%5C%5C%0A%26I_%7B2n%7D%20%3D%20%5Cfrac%7B2n-1%7D%7B2n%7D%20%5Ccdot%20%5Cfrac%7B2n-3%7D%7B2n-2%7D%20%5Ccdots%20%5Cfrac%7B1%7D%7B2%7D%20%5Ccdot%20I_0%20%3D%20%5Cfrac%7B(2n-1)!!%7D%7B(2n)!!%7D%20%5Ccdot%20%5Cfrac%7B%5Cpi%7D%7B2%7D%0A%5Cend%7Balign%7D


2. Beta 函數(shù)

利用 Gamma 函數(shù)的定義,

%5CGamma(n)%3D%5Cint_0%5E%7B%5Cinfty%7Dt%5E%7Bn-1%7D%5C%2C%5Cmathrm%7Be%7D%5E%7B-t%7D%5C%2C%5Cmathrm%7Bd%7Dt

令?t%3Dx%5E2,

%5CGamma(n)%3D2%5Cint_0%5E%7B%5Cinfty%7Dx%5E%7B2n-1%7D%5C%2C%5Cmathrm%7Be%7D%5E%7B-x%5E2%7D%5C%2C%5Cmathrm%7Bd%7Dx

做這個(gè)變量替換的目的是方便轉(zhuǎn)換到極坐標(biāo),

%5Cbegin%7Bsplit%7D%0A%5CGamma(m)%5Ccdot%5CGamma(n)%26%3D4%5Cint%5Climits_0%5E%7B%5Cinfty%7D%5Cint%5Climits_0%5E%7B%5Cinfty%7Dx%5E%7B2m-1%7Dy%5E%7B2n-1%7D%5C%2C%5Cmathrm%7Be%7D%5E%7B-(x%5E2%2By%5E2)%7D%5C%2C%5Cmathrm%7Bd%7Dx%5C%2C%5Cmathrm%7Bd%7Dy%5C%5C%0A%25%0A%26%3D4%5Cint_0%5E%7B%5Cinfty%7Dr%5E%7B2(m%2Bn)-1%7D%5C%2C%5Cmathrm%7Be%7D%5E%7B-r%5E2%7D%5C%2C%5Cmathrm%7Bd%7Dr%5Cint_0%5E%7B%5Cpi%2F2%7D%5Ccos%5E%7B2m-1%7D%5Ctheta%5Csin%5E%7B2n-1%7D%5Ctheta%5C%2C%5Cmathrm%7Bd%7D%5Ctheta%5C%5C%0A%25%0A%26%3D2%5C%2C%5CGamma(m%2Bn)%5Cint_0%5E%7B%5Cpi%2F2%7D%5Ccos%5E%7B2m-1%7D%5Ctheta%5Csin%5E%7B2n-1%7D%5Ctheta%5C%2C%5Cmathrm%7Bd%7D%5Ctheta%0A%5Cend%7Bsplit%7D

由此可以定義 Beta 函數(shù),

%5Cbegin%7Bsplit%7D%0A%5Cmathrm%7BB%7D(m%2Cn)%26%3D%5Cfrac%7B%5CGamma(m)%5Ccdot%5CGamma(n)%7D%7B%5CGamma(m%2Bn)%7D%5C%5C%0A%26%3D2%5Cint_0%5E%7B%5Cpi%2F2%7D%5Ccos%5E%7B2m-1%7D%5Ctheta%5Csin%5E%7B2n-1%7D%5Ctheta%5C%2C%5Cmathrm%7Bd%7D%5Ctheta%0A%5Cend%7Bsplit%7D

根據(jù)定義,

%5Cbegin%7Bsplit%7D%0AI_n%26%3D%5Cfrac12%5Cmathrm%7BB%7D%5C!%5Cleft(%5Cfrac12%2C%5Cfrac%7Bn%2B1%7D%7B2%7D%5Cright)%5C%5C%0A%26%3D%5Cfrac%7B%5CGamma%5C!%5Cleft(%5Cfrac12%5Cright)%5Ccdot%5CGamma%5C!%5Cleft(%5Cfrac%7Bn%2B1%7D%7B2%7D%5Cright)%7D%7B2%5C%2C%5CGamma%5C!%5Cleft(%5Cfrac%7Bn%7D%7B2%7D%2B1%5Cright)%7D%0A%5Cend%7Bsplit%7D

進(jìn)一步計(jì)算需要利用 Gamma 函數(shù)的如下性質(zhì),

%5Cbegin%7Balign%7D%0A%26%5CGamma(n%2B1)%3Dn%5CGamma(n)%3Dn!%5C%5C%0A%26%5CGamma%5C!%5Cleft(%5Cfrac12%5Cright)%3D%5CGamma%5C!%5Cleft(-%5Cfrac12%5Cright)%3D%5Csqrt%7B%5Cpi%7D%5C%5C%0A%26%5CGamma%5C!%5Cleft(n%2B%5Cfrac12%5Cright)%3D%5Cfrac%7B(2n-1)!!%7D%7B2%5En%7D%5Csqrt%7B%5Cpi%7D%0A%5Cend%7Balign%7D

分奇偶討論,

%5Cbegin%7Balign%7D%0A%26I_%7B2n%2B1%7D%3D%5Cfrac%7B%5CGamma%5C!%5Cleft(%5Cfrac12%5Cright)%5Ccdot%5CGamma(n%2B1)%7D%7B2%5C%2C%5CGamma%5C!%5Cleft(n%2B1%2B%5Cfrac12%5Cright)%7D%3D%5Cfrac%7B(2n)!!%7D%7B(2n%2B1)!!%7D%5C%5C%0A%26I_%7B2n%7D%3D%5Cfrac%7B%5CGamma%5C!%5Cleft(%5Cfrac12%5Cright)%5Ccdot%5CGamma%5C!%5Cleft(n%2B%5Cfrac12%5Cright)%7D%7B2%5C%2C%5CGamma%5C!%5Cleft(n%2B1%5Cright)%7D%3D%5Cfrac%7B(2n-1)!!%7D%7B(2n)!!%7D%5Cfrac%7B%5Cpi%7D%7B2%7D%0A%5Cend%7Balign%7D


單擺周期公式的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
宁强县| 建水县| 新乡市| 子洲县| 甘孜| 湟源县| 许昌市| 桐城市| 青川县| 甘德县| 雅安市| 修武县| 成都市| 丰顺县| 周口市| 灵石县| 共和县| 博湖县| 友谊县| 旬邑县| 兴仁县| 景泰县| 北辰区| 武冈市| 黄大仙区| 油尖旺区| 铜陵市| 荆门市| 雷州市| 沅江市| 江津市| 嵩明县| 宜州市| 莎车县| 小金县| 河南省| 汤原县| 大城县| 安康市| 阳泉市| 淳化县|