最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

數(shù)學(xué)公式測試

2023-04-05 20:02 作者:R_2147483647  | 我要投稿

b站自帶公式測試:

%5Cbegin%7Barray%7D%7Bl%7D%0A%E3%80%90%E9%AB%98%E4%B8%AD%E6%95%B0%E5%AD%A6%E3%80%91%E6%8A%9B%E7%89%A9%E7%BA%BF%E7%9A%84%E5%BA%94%E7%94%A8%0A%5C%5C%0A%0A%E3%80%90%E9%A2%98%E7%9B%AE%E3%80%91%E8%AE%BE%E6%9B%B2%E7%BA%BF%20%5CGamma%3Ax%5E2%3D2py%5Cquad(p%3E0)%20%EF%BC%8C%20D%20%E6%98%AF%E7%9B%B4%E7%BA%BF%20l%3Ay%3D-2p%20%E4%B8%8A%E7%9A%84%E4%BB%BB%E6%84%8F%E4%B8%80%E7%82%B9%EF%BC%8C%E8%BF%87%20D%20%E4%BD%9C%20%5CGamma%20%E7%9A%84%E5%88%87%E7%BA%BF%EF%BC%8C%E5%88%87%E7%82%B9%E5%88%86%E5%88%AB%E4%B8%BA%20A%20%E3%80%81%20B%20.%20%E8%AE%B0%20O%20%E4%B8%BA%E5%9D%90%E6%A0%87%E5%8E%9F%E7%82%B9%0A%0A%5C%5C%EF%BC%881%EF%BC%89%EF%BC%882%EF%BC%89%E3%80%90%E7%95%A5%E3%80%91%0A%0A%5C%5C%EF%BC%883%EF%BC%89%E8%AE%BE%E7%82%B9%20M%20%E6%BB%A1%E8%B6%B3%20%5Coverrightarrow%7BOM%7D%3D%5Coverrightarrow%7BOA%7D%2B%5Coverrightarrow%7BOB%7D%20%EF%BC%8C%E6%98%AF%E5%90%A6%E5%AD%98%E5%9C%A8%E8%BF%99%E6%A0%B7%E7%9A%84%E7%82%B9%20D%20%EF%BC%8C%E4%BD%BF%E5%BE%97%20M%20%E5%85%B3%E4%BA%8E%E7%9B%B4%E7%BA%BF%20AB%20%E7%9A%84%E5%AF%B9%E7%A7%B0%E7%82%B9%20N%20%E5%9C%A8%5CGamma%20%E4%B8%8A%EF%BC%9F%E8%8B%A5%E5%AD%98%E5%9C%A8%EF%BC%8C%E6%B1%82%E5%87%BA%20D%20%E7%9A%84%E5%9D%90%E6%A0%87%EF%BC%9B%E8%8B%A5%E4%B8%8D%E5%AD%98%E5%9C%A8%EF%BC%8C%E8%AF%B7%E8%AF%B4%E6%98%8E%E7%90%86%E7%94%B1.%0A%0A%0A%5C%5C%E3%80%90%E6%88%91%E7%9A%84%E8%A7%A3%E7%AD%94%E3%80%91%0A%0A%5C%5C%E2%88%B5%20y%3D%5Ccfrac%7Bx%5E2%7D%7B2p%7D%5Cqquad%20y'%3D%5Ccfrac%7Bdy%7D%7Bdx%7D%3D%5Ccfrac%7Bx%7D%7Bp%7D%0A%0A%5C%5C%E2%88%B4%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7B**lr**%7D%20y-y_A%3D%5Ccfrac%7Bx_A%7D%7Bp%7D(x-x_A)%5C%5C%20y-y_B%3D%5Ccfrac%7Bx_B%7D%7Bp%7D(x-x_B)%20%5Cend%7Barray%7D%20%5Cright.%0A%0A%5C%5C%E4%B8%8D%E5%A6%A8%E8%AE%BED(a%2C-2p)%0A%0A%5C%5C%E2%88%B4%20%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7B**lr**%7D%20-2p-y_A%3D%5Ccfrac%7Bx_A%7D%7Bp%7D(a-x_A)%5C%5C%20-2p-y_B%3D%5Ccfrac%7Bx_B%7D%7Bp%7D(a-x_B)%20%5Cend%7Barray%7D%20%5Cright.%0A%0A%5C%5C%E7%BB%93%E5%90%88x%5E2%3D2py%0A%0A%5C%5C%E5%8C%96%E7%AE%80%E5%BE%97%20l_%7BAB%7D%3Ay%3D%5Ccfrac%7Ba%7D%7Bp%7Dx%2B2p%0A%0A%5C%5C%E4%B8%8Ex%5E2%3D2py%20%E8%81%94%E7%AB%8B%0A%0A%5C%5C%E5%BE%97%20x%5E2-2ax%2B4p%3D0%0A%0A%5C%5C%E5%8D%B3%20%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7B**lr**%7D%20x_A%2Bx_B%3D2a%5C%5C%20y_A%2By_B%3D(%5Ccfrac%7Ba%7D%7Bp%7Dx_A%2B2p)%2B(%5Ccfrac%7Ba%7D%7Bp%7Dx_B%2B2p)%20%3D%5Ccfrac%7Ba%7D%7Bp%7D(x_A%2Bx_B)%2B4p%3D%5Ccfrac%7B2a%5E2%7D%7Bp%7D%2B4p%20%5Cend%7Barray%7D%20%5Cright.%0A%0A%5C%5C%E2%88%B5%20%5Coverrightarrow%7BOM%7D%3D%5Coverrightarrow%7BOA%7D%2B%5Coverrightarrow%7BOB%7D%0A%0A%5C%5C%E2%88%B4%20M(x_A%2Bx_B%2Cy_A%2By_B)%0A%0A%5C%5C%E5%8D%B3%20M(2a%2C%5Ccfrac%7B2a%5E2%7D%7Bp%7D%2B4p)%0A%0A%5C%5C%E2%88%B5%20k_%7Bl_%7BAB%7D%7D%3D%5Ccfrac%7Ba%7D%7Bp%7D%5Cqquad%20l_%7BAB%7D%5Cbot%20l_%7BMN%7D%0A%0A%5C%5C%E2%88%B4%20l_%7BMN%7D%3Ay%3D-%5Ccfrac%7Bp%7D%7Ba%7D(x-2a)%2B%5Ccfrac%7Ba%5E2%7D%7Bp%7D%2B4p%0A%0A%5C%5C%E2%88%B5%20M%20%E3%80%81N%20%E5%85%B3%E4%BA%8E%20AB%20%E5%AF%B9%E7%A7%B0%0A%0A%5C%5C%E2%88%B4%20d_%7BM-AB%7D%3Dd_%7BN-AB%7D%0A%0A%5C%5C%E5%8D%B3%20%5Clvert%5Ccfrac%7B%5Ccfrac%7Ba%7D%7Bp%7D2a-(%5Ccfrac%7B2a%5E2%7D%7Bp%7D%2B4p)%2B2p%7D%7B%5Csqrt%7B(%5Ccfrac%7Ba%7D%7Bp%7D)%5E2%2B(-1)%5E2%7D%7D%5Crvert%3D%5Clvert%5Ccfrac%7B%5Ccfrac%7Ba%7D%7Bp%7Dx_N-y_N%2B2p%7D%7B%5Csqrt%7B(%5Ccfrac%7Ba%7D%7Bp%7D)%5E2%2B(-1)%5E2%7D%7D%5Crvert%0A%0A%5C%5C%E2%88%B5%20y_N%3D-%5Ccfrac%7Bp%7D%7Ba%7D(x_N-2a)%2B%5Ccfrac%7Ba%5E2%7D%7Bp%7D%2B4p%0A%0A%5C%5C%E2%88%B4%202p%3D%5Clvert%5Ccfrac%7Ba%7D%7Bp%7Dx_N%2B%5Ccfrac%7Bp%7D%7Ba%7D(x_N-2a)-%5Ccfrac%7Ba%5E2%7D%7Bp%7D-4p%2B2p%5Crvert%0A%0A%5C%5C%E5%8D%B3%202p%3D%5Clvert%5Ccfrac%7Ba%5E2%2Bp%5E2%7D%7Bap%7Dx_N-%5Ccfrac%7Ba%5E2%7D%7Bp%7D-4p%5Crvert%0A%0A%5C%5Cx_N%3D%5Ccfrac%7B2a(a%5E2%2B3p%5E2)%7D%7Ba%5E2%2Bp%5E2%7D%5Cqquad%20y_N%3D-%5Ccfrac%7B4p%5E3%7D%7Ba%5E2%2Bp%5E2%7D%2B%5Ccfrac%7B2a%5E2%7D%7Bp%7D%2B4p%0A%0A%5C%5C%E2%88%B5%20%5Ccfrac%7Bx_N%5E2%7D%7B2p%7D%3Dy_N%0A%0A%5C%5C%E2%88%B4%20%5Ccfrac%7B1%7D%7B2p%7D(%5Ccfrac%7B2a(a%5E2%2B3p%5E2)%7D%7Ba%5E2%2Bp%5E2%7D)%5E2%3D-%5Ccfrac%7B4p%5E3%7D%7Ba%5E2%2Bp%5E2%7D%2B%5Ccfrac%7B2a%5E2%7D%7Bp%7D%2B4p%0A%0A%5C%5C%E2%88%B4%202a%5E2(a%5E2%2B3p%5E2)%5E2%3D-4p%5E4(a%5E2%2Bp%5E2)%2B2a%5E2(a%5E2%2Bp%5E2)%5E2%2B4p%5E2(a%5E2%2Bp%5E2)%5E2%0A%0A%5C%5C%E2%88%B4%20a%5E2p%5E2(3a%5E2%2B7p%5E2)%3D0%0A%0A%5C%5C%E2%88%B5%20p%3E0%0A%0A%5C%5C%E2%88%B4%20a%3D0%0A%0A%5C%5C%E2%88%B4%E7%BB%BC%E4%B8%8A%EF%BC%8C%20D(0%2C-2p)%0A%0A%0A%0A%5Cend%7Barray%7D

png:

源碼:
\begin{array}{l}
【高中數(shù)學(xué)】拋物線的應(yīng)用
\\

【題目】設(shè)曲線 \Gamma:x^2=2py\quad(p>0) , D 是直線 l:y=-2p 上的任意一點(diǎn),過 D 作 \Gamma 的切線,切點(diǎn)分別為 A 、 B . 記 O 為坐標(biāo)原點(diǎn)

\\(1)(2)【略】

\\(3)設(shè)點(diǎn) M 滿足 \overrightarrow{OM}=\overrightarrow{OA}+\overrightarrow{OB} ,是否存在這樣的點(diǎn) D ,使得 M 關(guān)于直線 AB 的對稱點(diǎn) N 在\Gamma 上?若存在,求出 D 的坐標(biāo);若不存在,請說明理由.


\\【我的解答】

\\∵ y=\cfrac{x^2}{2p}\qquad y'=\cfrac{dy}{dx}=\cfrac{x}{p}

\\∴\left\{ \begin{array}{**lr**} y-y_A=\cfrac{x_A}{p}(x-x_A)\\ y-y_B=\cfrac{x_B}{p}(x-x_B) \end{array} \right.

\\不妨設(shè)D(a,-2p)

\\∴ \left\{ \begin{array}{**lr**} -2p-y_A=\cfrac{x_A}{p}(a-x_A)\\ -2p-y_B=\cfrac{x_B}{p}(a-x_B) \end{array} \right.

\\結(jié)合x^2=2py

\\化簡得 l_{AB}:y=\cfrac{a}{p}x+2p

\\與x^2=2py 聯(lián)立

\\得 x^2-2ax+4p=0

\\即 \left\{ \begin{array}{**lr**} x_A+x_B=2a\\ y_A+y_B=(\cfrac{a}{p}x_A+2p)+(\cfrac{a}{p}x_B+2p) =\cfrac{a}{p}(x_A+x_B)+4p=\cfrac{2a^2}{p}+4p \end{array} \right.

\\∵ \overrightarrow{OM}=\overrightarrow{OA}+\overrightarrow{OB}

\\∴ M(x_A+x_B,y_A+y_B)

\\即 M(2a,\cfrac{2a^2}{p}+4p)

\\∵ k_{l_{AB}}=\cfrac{a}{p}\qquad l_{AB}\bot l_{MN}

\\∴ l_{MN}:y=-\cfrac{p}{a}(x-2a)+\cfrac{a^2}{p}+4p

\\∵ M 、N 關(guān)于 AB 對稱

\\∴ d_{M-AB}=d_{N-AB}

\\即 \lvert\cfrac{\cfrac{a}{p}2a-(\cfrac{2a^2}{p}+4p)+2p}{\sqrt{(\cfrac{a}{p})^2+(-1)^2}}\rvert=\lvert\cfrac{\cfrac{a}{p}x_N-y_N+2p}{\sqrt{(\cfrac{a}{p})^2+(-1)^2}}\rvert

\\∵ y_N=-\cfrac{p}{a}(x_N-2a)+\cfrac{a^2}{p}+4p

\\∴ 2p=\lvert\cfrac{a}{p}x_N+\cfrac{p}{a}(x_N-2a)-\cfrac{a^2}{p}-4p+2p\rvert

\\即 2p=\lvert\cfrac{a^2+p^2}{ap}x_N-\cfrac{a^2}{p}-4p\rvert

\\x_N=\cfrac{2a(a^2+3p^2)}{a^2+p^2}\qquad y_N=-\cfrac{4p^3}{a^2+p^2}+\cfrac{2a^2}{p}+4p

\\∵ \cfrac{x_N^2}{2p}=y_N

\\∴ \cfrac{1}{2p}(\cfrac{2a(a^2+3p^2)}{a^2+p^2})^2=-\cfrac{4p^3}{a^2+p^2}+\cfrac{2a^2}{p}+4p

\\∴ 2a^2(a^2+3p^2)^2=-4p^4(a^2+p^2)+2a^2(a^2+p^2)^2+4p^2(a^2+p^2)^2

\\∴ a^2p^2(3a^2+7p^2)=0

\\∵ p>0

\\∴ a=0

\\∴綜上, D(0,-2p)


\end{array}

數(shù)學(xué)公式測試的評論 (共 條)

分享到微博請遵守國家法律
扎鲁特旗| 将乐县| 莲花县| 祁东县| 海安县| 娄底市| 凤庆县| 若尔盖县| 武鸣县| 宁强县| 嘉黎县| 布拖县| 婺源县| 江门市| 云南省| 博兴县| 桂平市| 铜川市| 蒙山县| 双流县| 通州市| 萍乡市| 梧州市| 安国市| 桃江县| 连州市| 寿光市| 方正县| 晋中市| 阳春市| 华安县| 若尔盖县| 视频| 封丘县| 海宁市| 丰台区| 海盐县| 昌平区| 东辽县| 齐河县| 滦南县|