最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊

量子場論(十):時(shí)空中的粒子(一)

2022-12-24 06:30 作者:我的世界-華汁  | 我要投稿

龐加萊群描述閔可夫斯基時(shí)空的對稱性,粒子在閔可夫斯基時(shí)空中運(yùn)動(dòng)。不同種類的粒子由質(zhì)量、自旋、和一些其他的量子數(shù)加以區(qū)分,每個(gè)粒子具有一定的四維動(dòng)量和自旋在某個(gè)方向上投影的量子數(shù),對它做空間旋轉(zhuǎn)和洛倫茲增速變換時(shí),四維動(dòng)量會(huì)改變,自旋投影值也可能改變,變化的方式由洛倫茲變換決定,但質(zhì)量、自旋等其他量子數(shù)不會(huì)改變。當(dāng)%5CLambda%3D1時(shí),有:

%5Chat%20U%5E%7B-1%7D(%5Cmathbf1%2Ca)%5Chat%20P%5E%5Cmu%5Chat%20U(%5Cmathbf1%2Ca)%3D%5Chat%20P%5E%5Cmu.%5Ctag%7B10.1%7D

因此四維動(dòng)量算符在量子時(shí)空平移變換下不變,從而內(nèi)積%5Chat%20P%5E2%3D%5Chat%20P%5E%5Cmu%5Chat%20P_%5Cmu也不變。另一方面,%5Chat%20P%5E2是洛倫茲標(biāo)量算符,于是它的本征值p%5E2是龐加萊變換下的不變量。對單個(gè)粒子有質(zhì)殼關(guān)系p%5E2%3Dm%5E2成立,因此對單個(gè)粒子,這個(gè)不變量就是質(zhì)量的平方。

實(shí)際上,粒子態(tài)由龐加萊群的不可約幺正表示表述。1939年尤金·魏格納完成了這些表示的分類工作,一個(gè)粒子用在量子龐加萊變換下相互轉(zhuǎn)化的態(tài)矢%5C%7B%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle%5C%7D來定義,其中四維動(dòng)量p%5E%5Cmu是四維動(dòng)量算符在態(tài)矢%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle的本征值,即:

%5Chat%20P%5E%5Cmu%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle%3Dp%5E%5Cmu%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle.%5Ctag%7B10.2%7D

而指標(biāo)%5Csigma表征所有其他自由度,通常取分立值。標(biāo)量場單粒子態(tài)%7C%5Cmathbf%20p%5Crangle就是這樣的態(tài)矢。

在量子時(shí)空平移變換的作用下,單粒子態(tài)%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle的變換為:

%5Chat%20U(%5Cmathbf%201%2Ca)%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle%3De%5E%7B-i%5Chat%20P%5E%5Cmu%20a_%5Cmu%7D%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle%3De%5E%7B-ip%5E%5Cmu%20a_%5Cmu%7D%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle.%5Ctag%7B10.3%7D

只出現(xiàn)相位上的改變。另一方面,用量子洛倫茲變換%5Chat%20U(%5CLambda)作用得到單粒子態(tài)%5Chat%20U(%5CLambda)%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle%2C滿足:

%5Cbegin%7Balign%7D%5Chat%20P%5E%5Cmu%5Chat%20U(%5CLambda)%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle%26%3D%5Chat%20U(%5CLambda)%5Chat%20U%5E%7B-1%7D(%5CLambda)%5Chat%20P%5E%5Cmu%5Chat%20U(%5CLambda)%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle%3D%7B%5CLambda%5E%5Cmu%7D_%5Cnu%5Chat%20U(%5CLambda)%5Chat%20P%5E%5Cnu%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle%5C%5C%26%3D%7B%5CLambda%5E%5Cmu%7D_%5Cnu%20p%5E%5Cnu%5Chat%20U(%5CLambda)%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle.%5Cend%7Balign%7D%5Ctag%7B10.4%7D

因此,%5Chat%20U(%5CLambda)%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle的四維動(dòng)量本征值為%7B%5CLambda%5E%5Cmu%7D_%5Cnu%20p%5E%5Cnu。這意味著它必定是%7C%5CPsi_%7B%5Csigma%5E%5Cprime%7D(%7B%5CLambda%5E%5Cmu%7D_%5Cnu%20p%5E%5Cnu)%5Crangle的線性組合,即:

%5Chat%20U(%5CLambda)%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle%3D%5Csum_%7B%5Csigma%5E%5Cprime%7DC_%7B%5Csigma%5E%5Cprime%5Csigma%7D(%5CLambda%2Cp)%7C%5CPsi_%7B%5Csigma%5E%5Cprime%7D(%7B%5CLambda%5E%5Cmu%7D_%5Cnu%20p%5E%5Cnu)%5Crangle.%5Ctag%7B10.5%7D

現(xiàn)在,我們要了解系數(shù)C_%7B%5Csigma%5E%5Cprime%5Csigma%7D(%5CLambda%2Cp)的形式。

在固有保時(shí)向洛倫茲變換下,p%5E%5Cmu的內(nèi)積p%5E2不變,p%5E0的符號也不會(huì)改變,他們是所有慣性參考系的不變量。p%5E2的每個(gè)數(shù)值和p%5E0的每個(gè)符號決定了一組通過固有保時(shí)向洛倫茲變換聯(lián)系起來的四維動(dòng)量,可以從中選取一個(gè)標(biāo)準(zhǔn)四維動(dòng)量k%5E%5Cmu,使得:

p%5E%5Cmu%3D%7BV%5E%5Cmu%7D_%5Cnu(p)k%5E%5Cnu.%5Ctag%7B10.6%7D

其中%7BV%5E%5Cmu%7D_%5Cnu(p)是依賴于p%5E%5Cmu的固有保時(shí)向洛倫茲變換。從而,標(biāo)準(zhǔn)四維動(dòng)量k%5E%5Cmu就全權(quán)代表了這組四維動(dòng)量%5C%7Bp%5E%5Cmu%5C%7D??梢詫⑵渲腥我庠?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=p%5E%5Cmu" alt="p%5E%5Cmu">對應(yīng)的單粒子態(tài)定義為:

%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle%5Cequiv%20N(p)%5Chat%20U%5BV(p)%5D%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle.%5Ctag%7B10.7%7D

其中N(p)是依賴于四維動(dòng)量的歸一化因子。上式左右兩邊出現(xiàn)同一個(gè)指標(biāo)%5Csigma,實(shí)際上,這個(gè)式子規(guī)定了指標(biāo)與四維動(dòng)量的聯(lián)系。對這個(gè)單粒子態(tài)做量子洛倫茲變換,得到:

%5Cbegin%7Balign%7D%5Chat%20U(%5CLambda)%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle%26%3DN(p)%5Chat%20U%5BV(%5CLambda%20p)%5D%5Chat%20U%5E%7B-1%7D%5BV(%5CLambda%20p)%5D%5Chat%20U(%5CLambda)%5Chat%20U%5BV(p)%5D%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle%5C%5C%26%3DN(p)%5Chat%20U%5BV(%5CLambda%20p)%5D%5Chat%20U%5BV%5E%7B-1%7D(%5CLambda%20p)%5CLambda%20V(p)%5D%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle%5C%5C%26%3DN(p)%5Chat%20U%5BV(%5CLambda%20p)%5D%5Chat%20U(W)%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle.%5Cend%7Balign%7D%5Ctag%7B10.8%7D

其中,固有保時(shí)向洛倫茲變換:

%7BW%5E%5Cmu%7D_%5Cnu%3D%7B%5BV%5E%7B-1%7D(%5CLambda%20p)%5CLambda%20V(p)%5D%5E%5Cmu%7D_%5Cnu.%5Ctag%7B10.9%7D

把它作用于標(biāo)準(zhǔn)四維動(dòng)量之上:

%7BW%5E%5Cmu%7D_%5Cnu%20k%5E%5Cnu%3D%7B%5BV%5E%7B-1%7D(%5CLambda%20p)%5CLambda%20V(p)%5D%5E%5Cmu%7D_%5Cnu%20k%5E%5Cnu%3D%7B%5BV%5E%7B-1%7D(%5CLambda%20p)%5CLambda%5D%5E%5Cmu%7D_%5Cnu%20p%5E%5Cnu%3D%7B%5BV%5E%7B-1%7D(%5CLambda%20p)%5D%5E%5Cmu%7D_%5Cnu(%5CLambda%20p)%5E%5Cnu%3Dk%5E%5Cmu.%5Ctag%7B10.10%7D

可見%7BW%5E%5Cmu%7D_%5Cnu保證標(biāo)準(zhǔn)四維動(dòng)量不變,所有讓標(biāo)準(zhǔn)四維動(dòng)量不變的洛倫茲變換%5C%7B%7BW%5E%5Cmu%7D_%5Cnu%5C%7D構(gòu)成洛倫茲群的一個(gè)子群,稱為該標(biāo)準(zhǔn)四維動(dòng)量對應(yīng)的小群,類似于(10.5)式,有:

%5Chat%20U(W)%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle%3D%5Csum_%7B%5Csigma%5E%5Cprime%7DD_%7B%5Csigma%5E%5Cprime%5Csigma%7D(W)%7C%5CPsi_%7B%5Csigma%5E%5Cprime%7D(k%5E%5Cmu)%5Crangle.%5Ctag%7B10.11%7D

對于小群中的任意兩個(gè)變換%7B(W_1)%5E%5Cmu%7D_%5Cnu%2C%7B(W_2)%5E%5Cmu%7D_%5Cnu,由上式推出:

%5Csum_%7B%5Csigma%5E%5Cprime%7DD_%7B%5Csigma%5E%5Cprime%5Csigma%7D(W_2W_1)%7C%5CPsi_%7B%5Csigma%5E%5Cprime%7D(k%5E%5Cmu)%5Crangle%3D%5Chat%20U(W_2W_1)%7C%5CPsi_%7B%5Csigma%7D(k%5E%5Cmu)%5Crangle%3D%5Chat%20U(W_2)%5Chat%20U(W_1)%7C%5CPsi_%7B%5Csigma%7D(k%5E%5Cmu)%5Crangle%5C%5C%3D%5Chat%20U(W_2)%5Csum_%7B%5Csigma%5E%7B%5Cprime%5Cprime%7D%7DD_%7B%5Csigma%5E%7B%5Cprime%5Cprime%7D%5Csigma%7D(W_1)%7C%5CPsi_%7B%5Csigma%5E%7B%5Cprime%5Cprime%7D%7D(k%5E%5Cmu)%5Crangle%3D%5Csum_%7B%5Csigma%5E%5Cprime%5Csigma%5E%7B%5Cprime%5Cprime%7D%7DD_%7B%5Csigma%5E%5Cprime%5Csigma%5E%7B%5Cprime%5Cprime%7D%7D(W_2)D_%7B%5Csigma%5E%7B%5Cprime%5Cprime%7D%5Csigma%7D(W_1)%7C%5CPsi_%7B%5Csigma%5E%7B%5Cprime%7D%7D(k%5E%5Cmu)%5Crangle.%5Ctag%7B10.12%7D

從而得到同態(tài)關(guān)系:

D_%7B%5Csigma%5E%5Cprime%5Csigma%7D(W_2W_1)%3D%5Csum_%7B%5Csigma%5E%7B%5Cprime%5Cprime%7D%7DD_%7B%5Csigma%5E%5Cprime%5Csigma%5E%7B%5Cprime%5Cprime%7D%7D(W_2)D_%7B%5Csigma%5E%7B%5Cprime%5Cprime%7D%5Csigma%7D(W_1).%5Ctag%7B10.13%7D

可見,矩陣集合%5C%7BD(W)%5C%7D構(gòu)成這個(gè)小群的一個(gè)線性表示。把(10.11)代入(10.8),得到:

%5Cbegin%7Balign%7D%5Chat%20U(%5CLambda)%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle%26%3DN(p)%5Chat%20U%5BV(%5CLambda%20p)%5D%5Csum_%7B%5Csigma%5E%5Cprime%7DD_%7B%5Csigma%5E%5Cprime%5Csigma%7D(W)%7C%5CPsi_%7B%5Csigma%5E%5Cprime%7D(k%5E%5Cmu)%5Crangle%5C%5C%26%3DN(p)%5Csum_%7B%5Csigma%5E%5Cprime%7DD_%7B%5Csigma%5E%5Cprime%5Csigma%7D%5BV%5E%7B-1%7D(%5CLambda%20p)%5CLambda%20V(p)%5D%5Chat%20U%5BV(%5CLambda%20p)%5D%7C%5CPsi_%7B%5Csigma%5E%5Cprime%7D(k%5E%5Cmu)%5Crangle.%5Cend%7Balign%7D%5Ctag%7B10.14%7D

根據(jù)(10.7)式,得到:

%5Chat%20U%5BV(%5CLambda%20p)%5D%7C%5CPsi_%7B%5Csigma%5E%5Cprime%7D(k%5E%5Cmu)%5Crangle%3D%5Cfrac1%7BN(%5CLambda%20p)%7D%7C%5CPsi_%7B%5Csigma%5E%5Cprime%7D(%7B%5CLambda%5E%5Cmu%7D_%5Cnu%20p%5E%5Cnu)%5Crangle.%5Ctag%7B10.15%7D

代入(10.14)式,得到:

%5Chat%20U(%5CLambda)%7C%5CPsi_%5Csigma(p%5E%5Cmu)%5Crangle%3D%5Cfrac%7BN(p)%7D%7BN(%5CLambda%20p)%7D%5Csum_%7B%5Csigma%5E%5Cprime%7DD_%7B%5Csigma%5E%5Cprime%5Csigma%7D%5BV%5E%7B-1%7D(%5CLambda%20p)%5CLambda%20V(p)%5D%7C%5CPsi_%7B%5Csigma%5E%5Cprime%7D(%7B%5Clambda%5E%5Cmu%7D_%5Cnu%20p%5E%5Cnu)%5Crangle.%5Ctag%7B10.16%7D

與(10.5)式比較,得到系數(shù)公式:

C_%7B%5Csigma%5E%5Cprime%5Csigma%7D(%5CLambda%20%2Cp)%3D%5Cfrac%7BN(p)%7D%7BN(%5CLambda%20p)%7DD_%7B%5Csigma%5E%5Cprime%5Csigma%7D%5BV%5E%7B-1%7D(%5CLambda%20p)%5CLambda%20V(p)%5D.%5Ctag%7B10.17%7D

上述討論表明,我們可以通過標(biāo)準(zhǔn)四維動(dòng)量k%5E%5Cmu和相應(yīng)的小群對單粒子態(tài)分類,物理上有以下三種情況:

(1)質(zhì)量非零的粒子:p%5E2%3Dm%5E2p%5E0%3E0,其中質(zhì)量m%3E0。

此時(shí)四維動(dòng)量是類時(shí)的,取標(biāo)準(zhǔn)四維動(dòng)量為k%5E%5Cmu%3D(m%2C0%2C0%2C0),任意空間旋轉(zhuǎn)保證標(biāo)準(zhǔn)四維動(dòng)量不變,因此這個(gè)標(biāo)準(zhǔn)四維動(dòng)量對應(yīng)的小群是SO(3)。

在量子力學(xué)中,歸一化后的態(tài)矢仍具有一些任意性。態(tài)矢%7C%5CPsi%5Crangle與相差一個(gè)相因子的態(tài)矢e%5E%7Bi%5Cphi%7D%7C%5CPsi%5Crangle描述相同的態(tài)。因此,量子洛倫茲變換的同態(tài)關(guān)系應(yīng)當(dāng)修正為:

%5Chat%20U(%5CLambda_2)%5Chat%20U(%5CLambda_1)%3De%5E%7Bi%5Cphi(%5CLambda_2%2C%5CLambda_1)%7D%5Chat%20U(%5CLambda_2%5CLambda_1).%5Ctag%7B10.18%7D

若實(shí)相位不為零,則%5C%7B%5Chat%20U(%5CLambda)%5C%7D不是洛倫茲群的線性表示,而是投影表示。

對于任意小群變換W_1%2CW_2%5Cin%20SO(3),則有:

%5Chat%20U(W_2)%5Chat%20U(W_1)%3De%5E%7Bi%5Cphi(W_1%2CW_2)%7D%5Chat%20U(W_2W_1).%5Ctag%7B10.19%7D

左右兩邊分別作用在態(tài)矢%7C%5CPsi_%5Csigma(k%5E%5Cmu)%5Crangle上,利用(10.11)式,得到:

%5Csum_%7B%5Csigma%5E%5Cprime%5Csigma%5E%7B%5Cprime%5Cprime%7D%7DD_%7B%5Csigma%5E%5Cprime%5Csigma%5E%7B%5Cprime%5Cprime%7D%7D(W_2)D_%7B%5Csigma%5E%7B%5Cprime%5Cprime%7D%5Csigma%7D(W_1)%7C%5CPsi_%7B%5Csigma%5E%5Cprime%7D(k%5E%5Cmu)%5Crangle%3De%5E%7Bi%5Cphi(W_2%2CW_1)%7D%5Csum_%7B%5Csigma%5E%5Cprime%7DD_%7B%5Csigma%5E%7B%5Cprime%7D%5Csigma%7D(W_2W_1)%7C%5CPsi_%7B%5Csigma%5E%5Cprime%7D(k%5E%5Cmu)%5Crangle.%5Ctag%7B10.20%7D

故:

%5Csum_%7B%5Csigma%5E%7B%5Cprime%5Cprime%7D%7DD_%7B%5Csigma%5E%5Cprime%5Csigma%5E%7B%5Cprime%5Cprime%7D%7D(W_2)D_%7B%5Csigma%5E%7B%5Cprime%5Cprime%7D%5Csigma%7D(W_1)%3De%5E%7Bi%5Cphi(W_2%2CW_1)%7DD_%7B%5Csigma%5E%7B%5Cprime%7D%5Csigma%7D(W_2W_1).%5Ctag%7B10.21%7D

若相因子不恒為零,則{D(W)}構(gòu)成SO(3)的一個(gè)投影表示。

在李群的群空間,每個(gè)點(diǎn)對應(yīng)一個(gè)群元。由于群的封閉性,兩個(gè)群元的乘積一定對應(yīng)于群空間中的某個(gè)點(diǎn)。從而,群空間中的一條曲線意味著一系列的群乘積,乘出來的群元連續(xù)地組合成這條曲線??紤] SO(3) 群空間內(nèi)一條閉合曲線,它從恒元出發(fā),通過一系列群乘積相繼經(jīng)過W_1W_2W_1兩個(gè)點(diǎn)再回到恒元,則相應(yīng)的量子變換是%5Chat%20U%5E%7B-1%7D(W_2W_1)%5Chat%20U(W_2)%5Chat%20U(W_1)。如果這條曲線能連續(xù)地收縮成恒元這一點(diǎn),則%5Chat%20U%5E%7B-1%7D(W_2W_1)%5Chat%20U(W_2)%5Chat%20U(W_1)是恒等變換1。如果這條曲線包含奇數(shù)次對徑點(diǎn)跳躍,就不能連續(xù)收縮到恒元一點(diǎn),%5Chat%20U%5E%7B-1%7D(W_2W_1)%5Chat%20U(W_2)%5Chat%20U(W_1)不一定是恒等變換。不過,依這條曲線的路徑重復(fù)兩次,則包含偶數(shù)次對徑點(diǎn)跳躍,則可通過連續(xù)形變消除這些跳躍,從而收縮為恒元一點(diǎn)。則:

%5B%5Chat%20U%5E%7B-1%7D(W_2W_1)%5Chat%20U(W_2)%5Chat%20U(W_1)%5D%5E2%3D1.%5Ctag%7B10.22%7D

由此得到%5Chat%20U%5E%7B-1%7D(W_2W_1)%5Chat%20U(W_2)%5Chat%20U(W_1)%3D%5Cpm%201,即:

%5Chat%20U(W_2)%5Chat%20U(W_1)%3D%5Cpm%5Chat%20U(W_2W_1).%5Ctag%7B10.23%7D

可見,SO(3)群的相因子可取±1。

SO(3)的覆蓋群SU(2)是單連通的,群空間中的任意經(jīng)過恒元的閉合曲線都能收縮到恒元一點(diǎn)處,因此相因子等于1,不具有投影表示。群論知識告訴我們,SU(2)群的不等價(jià)不可約表示都是幺正表示,記為:

D%5E%7B(s)%7D%2Cs%3D0%2C%5Cfrac12%2C1%2C%5Cfrac32%2C%E2%80%A6%5Ctag%7B10.24%7D

這里的s就是自旋量子數(shù)。線性表示D%5E%7B(s)%7D是2s+1維的,表示矩陣元表達(dá)為D%5E%7B(s)%7D_%7B%5Csigma%5E%5Cprime%5Csigma%7D(W),其中%5Csigma%5E%5Cprime%2C%5Csigma%3D-s%2C-s%2B1%2C%E2%80%A6%2Cs-1%2Cs是自旋在某個(gè)方向上投影出來的本征值。因此,自旋為s的有質(zhì)量粒子具有2s+1種自旋極化態(tài)。根據(jù)(10.16)式,自旋為s的有質(zhì)量單粒子態(tài)%7C%5CPsi_%7Bs%2C%5Csigma%7D(p%5E%5Cmu)%5Crangle的量子洛倫茲變換為:

%5Chat%20U(%5CLambda)%7C%5CPsi_%7Bs%2C%5Csigma%7D(p%5E%5Cmu)%5Crangle%3D%5Cfrac%7BN(p)%7D%7BN(%5CLambda%20p)%7D%5Csum_%7B%5Csigma%5E%5Cprime%7DD%5E%7B(s)%7D_%7B%5Csigma%5E%5Cprime%5Csigma%7D%5BV%5E%7B-1%7D(%5CLambda%20p)%5CLambda%20V(p)%5D%7C%5CPsi_%7Bs%2C%5Csigma%5E%5Cprime%7D(%7B%5Clambda%5E%5Cmu%7D_%5Cnu%20p%5E%5Cnu)%5Crangle.%5Ctag%7B10.25%7D

可見,量子洛倫茲變換把一個(gè)極化態(tài)變成多個(gè)不同極化態(tài)的線性組合。

當(dāng)s是整數(shù)時(shí),D%5E%7B(s)%7D是SU(2)群的非忠實(shí)線性表示,同時(shí)也是SO(3)的線性表示,描述整數(shù)自旋的粒子。D%5E%7B(0)%7D是這兩個(gè)群的恒等表示,描述零自旋粒子(例如希格斯粒子)。D%5E%7B(1)%7D是SO(3)的基礎(chǔ)表示,描述自旋為1的粒子(例如光子)。

當(dāng)s是半奇數(shù)時(shí),D%5E%7B(s)%7D是SU(2)群的非忠實(shí)線性表示,同時(shí)也是SO(3)的雙值表示,描述半奇數(shù)自旋粒子。D%5E%7B(%5Cfrac12)%7D是SU(2)群的基礎(chǔ)表示,描述自旋為%5Cfrac12的粒子(例如電子)。

固有保時(shí)向洛倫茲群SO%5E%5Cuparrow(1%2C3)也是雙連通的,它的覆蓋群是復(fù)域上的特殊線性群SL(2%2C%5Cmathbb%20C)。在龐加萊群空間中,與恒元連通的部分對應(yīng)于SO%5E%5Cuparrow(1%2C3)與時(shí)空平移群的半直積群,它是雙連通的,與之對應(yīng)的覆蓋群是SL(2%2C%5Cmathbb%20C)與時(shí)空平移群的半直積群。

量子場論(十):時(shí)空中的粒子(一)的評論 (共 條)

分享到微博請遵守國家法律
常宁市| 勐海县| 贡嘎县| 克什克腾旗| 陆良县| 望江县| 陈巴尔虎旗| 夏津县| 彩票| 塘沽区| 双流县| 新乡县| 镇江市| 本溪| 乌鲁木齐县| 大石桥市| 淮南市| 克东县| 香港 | 阜阳市| 民乐县| 平定县| 滨海县| 南川市| 青冈县| 垫江县| 佳木斯市| 桓仁| 武汉市| 婺源县| 天全县| 西丰县| 广州市| 宁波市| 霍城县| 阿鲁科尔沁旗| 兴隆县| 阜南县| 石屏县| 黄骅市| 登封市|