最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

1小時(shí)學(xué)會 Segment Anything Model (SAM) 遙感影像分割 | 第三節(jié)

2023-07-18 00:55 作者:GIS數(shù)據(jù)棧  | 我要投稿

## Install dependencies


Uncomment and run the following cell to install the required dependencies.


```python

import os

os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" #OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized

os.environ['PROJ_LIB'] =r"F:\Anaconda3\envs\samgeo\Lib\site-packages\pyproj\proj_dir\share\proj"

```


```python

import leafmap

from samgeo import tms_to_geotiff

from samgeo.text_sam import LangSAM

```


## Create an interactive map


```python

m = leafmap.Map(center=[-22.17615, -51.253043], zoom=18, height="800px")

m.add_basemap("Esri.WorldImagery")

m

```


? ? Map(center=[-22.17615, -51.253043], controls=(ZoomControl(options=['position', 'zoom_in_text', 'zoom_in_title'…


## Download a sample image


Pan and zoom the map to select the area of interest. Use the draw tools to draw a polygon or rectangle on the map


```python

bbox = m.user_roi_bounds()

if bbox is None:

? ? bbox = [-51.2565, -22.1777, -51.2512, -22.175]

```


```python

image = "Image.tif"

# tms_to_geotiff(output=image, bbox=bbox, zoom=19, source="Satellite", overwrite=True)

```


You can also use your own image. Uncomment and run the following cell to use your own image.


Display the downloaded image on the map.


```python

m.layers[-1].visible = False

m.add_raster(image, layer_name="Image")

m

```


? ? Map(bottom=18898354.0, center=[-22.17615, -51.253043], controls=(ZoomControl(options=['position', 'zoom_in_tex…


## Initialize LangSAM class


The initialization of the LangSAM class might take a few minutes. The initialization downloads the model weights and sets up the model for inference.


```python

# import samgeo

# samgeo.update_package()

```


```python

sam = LangSAM()

```


? ? final text_encoder_type: bert-base-uncased

? ?


? ? Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertModel: ['cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.bias', 'cls.predictions.transform.dense.weight', 'cls.seq_relationship.bias', 'cls.seq_relationship.weight', 'cls.predictions.transform.dense.bias']

? ? - This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).

? ? - This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).

? ?


## Specify text prompts


```python

text_prompt = "tree"

```


## Segment the image


Part of the model prediction includes setting appropriate thresholds for object detection and text association with the detected objects. These threshold values range from 0 to 1 and are set while calling the predict method of the LangSAM class.


`box_threshold`: This value is used for object detection in the image. A higher value makes the model more selective, identifying only the most confident object instances, leading to fewer overall detections. A lower value, conversely, makes the model more tolerant, leading to increased detections, including potentially less confident ones.


`text_threshold`: This value is used to associate the detected objects with the provided text prompt. A higher value requires a stronger association between the object and the text prompt, leading to more precise but potentially fewer associations. A lower value allows for looser associations, which could increase the number of associations but also introduce less precise matches.


Remember to test different threshold values on your specific data. The optimal threshold can vary depending on the quality and nature of your images, as well as the specificity of your text prompts. Make sure to choose a balance that suits your requirements, whether that's precision or recall.


```python

sam.predict(image, text_prompt, box_threshold=0.24, text_threshold=0.24)

```


## Visualize the results


Show the result with bounding boxes on the map.


```python

sam.show_anns(

? ? cmap='Greens',

? ? box_color='red',

? ? title='Automatic Segmentation of Trees',

? ? blend=True,

)

```


? ?

![png](output_19_0.png)

? ?


Show the result without bounding boxes on the map.


```python

sam.show_anns(

? ? cmap='Greens',

? ? add_boxes=False,

? ? alpha=0.5,

? ? title='Automatic Segmentation of Trees',

)

```


? ?

![png](output_21_0.png)

? ?


```python

sam.show_anns(

? ? cmap='Greys_r',

? ? add_boxes=False,

? ? alpha=1,

? ? title='Automatic Segmentation of Trees',

? ? blend=False,

? ? output='trees.tif',

)

```


? ?

![png](output_22_0.png)

? ?


Convert the result to a vector format. ?


```python

sam.raster_to_vector("trees.tif", "trees.shp")

```


Show the results on the interactive map.


```python

m.add_raster("trees.tif", layer_name="Trees", palette="Greens", opacity=0.5, nodata=0)

style = {

? ? "color": "#3388ff",

? ? "weight": 2,

? ? "fillColor": "#7c4185",

? ? "fillOpacity": 0.5,

}

m.add_vector("trees.shp", layer_name="Vector", style=style)

m

```


? ? Map(bottom=1209461600.0, center=[-22.176349999999996, -51.25385], controls=(ZoomControl(options=['position', '…


#### Interactive segmentation


```python

# sam.show_map()

```


# ANOTHER 2023-07-11 11:25


```python

from samgeo import SamGeo

sam1 = SamGeo()

sam1.clear_cuda_cache()

```


```python

sam.predict(image, "roads", box_threshold=0.24, text_threshold=0.24)

sam.show_anns(

? ? cmap='Reds',

? ? add_boxes=False,

? ? alpha=0.5,

? ? title='Automatic Segmentation of roads',

)

```


```python

sam.show_anns(

? ? cmap='Greys_r',

? ? add_boxes=False,

? ? alpha=1,

? ? title='Automatic Segmentation of roads',

? ? blend=False,

? ? output='roads.tif',

)

```


```python

sam.raster_to_vector("roads.tif", "roads.shp")

```


```python

m.add_raster("trees.tif", layer_name="Trees", palette="Greens", opacity=0.5, nodata=0)

style = {

? ? "color": "#3388ff",

? ? "weight": 2,

? ? "fillColor": "#7c4185",

? ? "fillOpacity": 0.5,

}

m.add_vector("roads.shp", layer_name="Vector", style=style)

m

```



1小時(shí)學(xué)會 Segment Anything Model (SAM) 遙感影像分割 | 第三節(jié)的評論 (共 條)

分享到微博請遵守國家法律
沅陵县| 梨树县| 奇台县| 台北县| 沾益县| 台山市| 同仁县| 工布江达县| 淮滨县| 乌拉特后旗| 前郭尔| 福安市| 平谷区| 肥乡县| SHOW| 彰化县| 阿荣旗| 包头市| 大埔区| 遵义市| 乳山市| 澎湖县| 英山县| 华安县| 应城市| 奎屯市| 调兵山市| 柞水县| 洪洞县| 合肥市| 长沙市| 宣威市| 崇文区| 天门市| 抚州市| 岳普湖县| 启东市| 康马县| 如皋市| 东阳市| 饶阳县|