最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

爆肝160+篇!近四年小樣本學(xué)習(xí)(FSL)頂會(huì)論文分享,含2023最新

2023-09-19 18:01 作者:深度之眼官方賬號(hào)  | 我要投稿

學(xué)姐又爆肝了!速來(lái)白嫖?。ǖ沁€是想要個(gè)贊)

這次分享的是近四年(2020-2023)各大頂會(huì)中的小樣本學(xué)習(xí)(FSL)論文,有160+篇,涵蓋了FSL三大類(lèi)方法:數(shù)據(jù)、模型、算法,以及FSL的應(yīng)用、技術(shù)、理論等領(lǐng)域。

由于論文數(shù)量太多,學(xué)姐就不一一分析總結(jié)了,建議大家收藏下慢慢研讀。

全部160+篇論文原文及開(kāi)源代碼學(xué)姐已打包,需要的同學(xué)看這里??????

掃碼添加小享,回復(fù)“小樣本160

免費(fèi)獲取全部論文+源代碼合集

數(shù)據(jù)(12篇)

Towards better understanding and better generalization of low-shot classification in histology images with contrastive learning

標(biāo)題:通過(guò)對(duì)比學(xué)習(xí)來(lái)更好地理解和提高組織病理圖像中的小樣本分類(lèi)的泛化能力

方法介紹:本文通過(guò)設(shè)置三個(gè)跨域任務(wù)來(lái)推動(dòng)組織病理圖像的小樣本學(xué)習(xí)研究,模擬實(shí)際臨床問(wèn)題。為實(shí)現(xiàn)高效標(biāo)注和更好的泛化能力,作者提出結(jié)合對(duì)比學(xué)習(xí)和潛在增強(qiáng)來(lái)構(gòu)建小樣本系統(tǒng)。對(duì)比學(xué)習(xí)可以在無(wú)手動(dòng)標(biāo)注下學(xué)習(xí)有用表示,而潛在增強(qiáng)以非監(jiān)督方式傳遞基數(shù)據(jù)集的語(yǔ)義變化。這兩者可充分利用無(wú)標(biāo)注訓(xùn)練數(shù)據(jù),可擴(kuò)展到其他數(shù)據(jù)饑渴問(wèn)題。

  1. FlipDA: Effective and robust data augmentation for few-shot learning

  2. PromDA: Prompt-based data augmentation for low-resource NLU tasks

  3. Generating representative samples for few-shot classification

  4. FeLMi : Few shot learning with hard mixup

  5. Understanding cross-domain few-shot learning based on domain similarity and few-shot difficulty

  6. Label hallucination for few-shot classification

  7. STUNT: Few-shot tabular learning with self-generated tasks from unlabeled tables

  8. Unsupervised meta-learning via few-shot pseudo-supervised contrastive learning

  9. Progressive mix-up for few-shot supervised multi-source domain transfer

  10. Cross-level distillation and feature denoising for cross-domain few-shot classification

  11. Tuning language models as training data generators for augmentation-enhanced few-shot learning

模型(35篇)

多任務(wù)學(xué)習(xí)

When does self-supervision improve few-shot learning?

標(biāo)題:自監(jiān)督學(xué)習(xí)在什么情況下可以改進(jìn)小樣本學(xué)習(xí)?

方法介紹:雖然自監(jiān)督學(xué)習(xí)的收益可能隨著更大的訓(xùn)練數(shù)據(jù)集而增加,但我們也觀察到,當(dāng)用于元學(xué)習(xí)和自監(jiān)督的圖像分布不同時(shí),自監(jiān)督學(xué)習(xí)實(shí)際上可能會(huì)損害性能。通過(guò)系統(tǒng)地變化域移度和在多個(gè)域上分析幾種元學(xué)習(xí)算法的性能,作者進(jìn)行了詳細(xì)的分析研究?;谶@一分析,作者提出了一種從大規(guī)模通用無(wú)標(biāo)注圖像池中自動(dòng)選擇適合特定數(shù)據(jù)集的自監(jiān)督學(xué)習(xí)圖像的技術(shù),可以進(jìn)一步改進(jìn)性能。

  1. Pareto self-supervised training for few-shot learning

  2. Bridging multi-task learning and meta-learning: Towards efficient training and effective adaptation

  3. Task-level self-supervision for cross-domain few-shot learning

嵌入/度量學(xué)習(xí)

Few-shot learning as cluster-induced voronoi diagrams: A geometric approach

標(biāo)題:將小樣本學(xué)習(xí)視為由簇誘導(dǎo)的Voronoi圖:一種幾何方法

方法介紹:小樣本學(xué)習(xí)仍面臨泛化能力不足的挑戰(zhàn),本文從幾何視角出發(fā),發(fā)現(xiàn)流行的 ProtoNet 模型本質(zhì)上是特征空間中的 Voronoi 圖。通過(guò)利用“由簇誘導(dǎo)的 Voronoi 圖”的技術(shù),可以逐步改進(jìn)空間分割,在小樣本學(xué)習(xí)的多個(gè)階段提升準(zhǔn)確率和魯棒性。這一基于該圖的框架數(shù)學(xué)優(yōu)雅、幾何可解釋,可以補(bǔ)償極端數(shù)據(jù)不足,防止過(guò)擬合,并實(shí)現(xiàn)快速幾何推理。

  1. Few-shot learning with siamese networks and label tuning

  2. Matching feature sets for few-shot image classification

  3. EASE: Unsupervised discriminant subspace learning for transductive few-shot learning

  4. Cross-domain few-shot learning with task-specific adapters

  5. Rethinking generalization in few-shot classification

  6. Hybrid graph neural networks for few-shot learning

  7. Hubs and hyperspheres: Reducing hubness and improving transductive few-shot learning with hyperspherical embeddings

  8. Revisiting prototypical network for cross domain few-shot learning

  9. Transductive few-shot learning with prototype-based label propagation by iterative graph refinement

  10. Few-sample feature selection via feature manifold learning

  11. Interval bound interpolation for few-shot learning with few tasks

  12. A closer look at few-shot classification again

  13. TART: Improved few-shot text classification using task-adaptive reference transformation

外部存儲(chǔ)器輔助學(xué)習(xí)

Dynamic memory induction networks for few-shot text classification

標(biāo)題:動(dòng)態(tài)記憶誘導(dǎo)網(wǎng)絡(luò)用于短文本分類(lèi)

方法介紹:本文提出了動(dòng)態(tài)記憶誘導(dǎo)網(wǎng)絡(luò),用于短文本的少樣本分類(lèi)。該模型利用動(dòng)態(tài)路由為基于記憶的少樣本學(xué)習(xí)提供更大靈活性,以便更好地適應(yīng)支持集,這是少樣本分類(lèi)模型的關(guān)鍵能力。在此基礎(chǔ)上,作者進(jìn)一步開(kāi)發(fā)了包含查詢信息的誘導(dǎo)模型,旨在增強(qiáng)元學(xué)習(xí)的泛化能力。

  1. Few-shot visual learning with contextual memory and fine-grained calibration

  2. Learn from concepts: Towards the purified memory for few-shot learning

  3. Prototype memory and attention mechanisms for few shot image generation

  4. Hierarchical variational memory for few-shot learning across domains

  5. Remember the difference: Cross-domain few-shot semantic segmentation via meta-memory transfer

  6. Consistent prototype learning for few-shot continual relation extraction

生成式建模

Few-shot relation extraction via bayesian meta-learning on relation graphs

標(biāo)題:通過(guò)關(guān)系圖上的貝葉斯元學(xué)習(xí)實(shí)現(xiàn)短文本關(guān)系提取

方法介紹:作者提出了一種新的貝葉斯元學(xué)習(xí)方法,用于有效學(xué)習(xí)關(guān)系原型向量的后驗(yàn)分布,其中關(guān)系原型向量的先驗(yàn)由定義在全局關(guān)系圖上的圖神經(jīng)網(wǎng)絡(luò)參數(shù)化。此外,為了有效優(yōu)化原型向量的后驗(yàn)分布,作者使用了相關(guān)于MAML算法的隨機(jī)梯度蘭weibo乎動(dòng)力學(xué),它可以處理原型向量的不確定性,整個(gè)框架可以端到端高效優(yōu)化。

  1. Interventional few-shot learning

  2. Modeling the probabilistic distribution of unlabeled data for one-shot medical image segmentation

  3. SCHA-VAE: Hierarchical context aggregation for few-shot generation

  4. Diversity vs. Recognizability: Human-like generalization in one-shot generative models

  5. Generalized one-shot domain adaptation of generative adversarial networks

  6. Towards diverse and faithful one-shot adaption of generative adversarial networks

  7. Few-shot cross-domain image generation via inference-time latent-code learning

  8. Adaptive IMLE for few-shot pretraining-free generative modelling

  9. MetaModulation: Learning variational feature hierarchies for few-shot learning with fewer tasks

算法(24篇)

優(yōu)化已有參數(shù)

  1. Revisit finetuning strategy for few-shot learning to transfer the emdeddings

  2. Prototypical calibration for few-shot learning of language models

  3. Prompt, generate, then cache: Cascade of foundation models makes strong few-shot learners

  4. Supervised masked knowledge distillation for few-shot transformers

  5. Hint-Aug: Drawing hints from foundation vision transformers towards boosted few-shot parameter-efficient tuning

  6. Few-shot learning with visual distribution calibration and cross-modal distribution alignment

  7. MetricPrompt: Prompting model as a relevance metric for few-shot text classification

  8. Multitask pre-training of modular prompt for chinese few-shot learning

  9. Cold-start data selection for better few-shot language model fine-tuning: A prompt-based uncertainty propagation approach

  10. Instruction induction: From few examples to natural language task descriptions

  11. Hierarchical verbalizer for few-shot hierarchical text classification

優(yōu)化元學(xué)習(xí)中的參數(shù)

  1. How to train your MAML to excel in few-shot classification

  2. Meta-learning with fewer tasks through task interpolation

  3. Dynamic kernel selection for improved generalization and memory efficiency in meta-learning

  4. What matters for meta-learning vision regression tasks?

  5. Stochastic deep networks with linear competing units for model-agnostic meta-learning

  6. Robust meta-learning with sampling noise and label noise via Eigen-Reptile

  7. Attentional meta-learners for few-shot polythetic classification

  8. PLATINUM: Semi-supervised model agnostic meta-learning using submodular mutual information

  9. FAITH: Few-shot graph classification with hierarchical task graphs

  10. A contrastive rule for meta-learning

  11. Meta-ticket: Finding optimal subnetworks for few-shot learning within randomly initialized neural networks

學(xué)習(xí)搜索步驟

  1. Optimization as a model for few-shot learning

  2. Meta Navigator: Search for a good adaptation policy for few-shot learning

應(yīng)用(57篇)

計(jì)算機(jī)視覺(jué)

  1. Analogy-forming transformers for few-shot 3D parsing

  2. Universal few-shot learning of dense prediction tasks with visual token matching

  3. Meta learning to bridge vision and language models for multimodal few-shot learning

  4. Few-shot geometry-aware keypoint localization

  5. AsyFOD: An asymmetric adaptation paradigm for few-shot domain adaptive object detection

  6. A strong baseline for generalized few-shot semantic segmentation

  7. StyleAdv: Meta style adversarial training for cross-domain few-shot learning

  8. DiGeo: Discriminative geometry-aware learning for generalized few-shot object detection

  9. Hierarchical dense correlation distillation for few-shot segmentation

  10. CF-Font: Content fusion for few-shot font generation

  11. MoLo: Motion-augmented long-short contrastive learning for few-shot action recognition

  12. MIANet: Aggregating unbiased instance and general information for few-shot semantic segmentation

  13. FreeNeRF: Improving few-shot neural rendering with free frequency regularization

  14. Exploring incompatible knowledge transfer in few-shot image generation

  15. Where is my spot? few-shot image generation via latent subspace optimization

  16. FGNet: Towards filling the intra-class and inter-class gaps for few-shot segmentation

  17. GeCoNeRF: Few-shot neural radiance fields via geometric consistency

掃碼添加小享,回復(fù)“小樣本160

免費(fèi)獲取全部論文+源代碼合集

機(jī)器技術(shù)

  1. One solution is not all you need: Few-shot extrapolation via structured MaxEnt RL

  2. Bowtie networks: Generative modeling for joint few-shot recognition and novel-view synthesis

  3. Demonstration-conditioned reinforcement learning for few-shot imitation

  4. Hierarchical few-shot imitation with skill transition models

  5. Prompting decision transformer for few-shot policy generalization

  6. Stage conscious attention network (SCAN): A demonstration-conditioned policy for few-shot imitation

  7. Online prototype alignment for few-shot policy transfer

自然語(yǔ)言處理

  1. A dual prompt learning framework for few-shot dialogue state tracking

  2. CLUR: Uncertainty estimation for few-shot text classification with contrastive learning

  3. Few-shot document-level event argument extraction

  4. MetaAdapt: Domain adaptive few-shot misinformation detection via meta learning

  5. Code4Struct: Code generation for few-shot event structure prediction

  6. MANNER: A variational memory-augmented model for cross domain few-shot named entity recognition

  7. Few-shot event detection: An empirical study and a unified view

  8. CodeIE: Large code generation models are better few-shot information extractors

  9. Few-shot in-context learning on knowledge base question answering

  10. Linguistic representations for fewer-shot relation extraction across domains

  11. Few-shot reranking for multi-hop QA via language model prompting

知識(shí)圖譜

  1. Adaptive attentional network for few-shot knowledge graph completion

  2. Learning inter-entity-interaction for few-shot knowledge graph completion

  3. Few-shot relational reasoning via connection subgraph pretraining

  4. Hierarchical relational learning for few-shot knowledge graph completion

  5. The unreasonable effectiveness of few-shot learning for machine translation

聲音信號(hào)處理

  1. Audio2Head: Audio-driven one-shot talking-head generation with natural head motion

  2. Few-shot low-resource knowledge graph completion with multi-view task representation generation

  3. Normalizing flow-based neural process for few-shot knowledge graph completion

推薦系統(tǒng)

  1. Few-shot news recommendation via cross-lingual transfer

  2. ColdNAS: Search to modulate for user cold-start recommendation

  3. Contrastive collaborative filtering for cold-start item recommendation

  4. SMINet: State-aware multi-aspect interests representation network for cold-start users recommendation

  5. Multimodality helps unimodality: Cross-modal few-shot learning with multimodal models

  6. M2EU: Meta learning for cold-start recommendation via enhancing user preference estimation

  7. Aligning distillation for cold-start item recommendation

其他

  1. Context-enriched molecule representations improve few-shot drug discovery

  2. Sequential latent variable models for few-shot high-dimensional time-series forecasting

  3. Transfer NAS with meta-learned Bayesian surrogates

  4. Few-shot domain adaptation for end-to-end communication

  5. Contrastive meta-learning for few-shot node classification

  6. Task-equivariant graph few-shot learning

  7. Leveraging transferable knowledge concept graph embedding for cold-start cognitive diagnosis

理論(7篇)

  1. Bridging the gap between practice and PAC-Bayes theory in few-shot meta-learning

  2. bounds for meta-learning: An information-theoretic analysis

  3. Generalization bounds for meta-learning via PAC-Bayes and uniform stability

  4. Unraveling model-agnostic meta-learning via the adaptation learning rate

  5. On the importance of firth bias reduction in few-shot classification

  6. Global convergence of MAML and theory-inspired neural architecture search for few-shot learning

  7. Smoothed embeddings for certified few-shot learning

小樣本/零樣本學(xué)習(xí)(15篇)

  1. Finetuned language models are zero-shot learners

  2. Zero-shot stance detection via contrastive learning

  3. JointCL: A joint contrastive learning framework for zero-shot stance detection

  4. Knowledgeable prompt-tuning: Incorporating knowledge into prompt verbalizer for text classification

  5. Nearest neighbor zero-shot inference

  6. Continued pretraining for better zero- and few-shot promptability

  7. InstructDial: Improving zero and few-shot generalization in dialogue through instruction tuning

  8. Prompt-and-Rerank: A method for zero-shot and few-shot arbitrary textual style transfer with small language models

  9. Learning instructions with unlabeled data for zero-shot cross-task generalization

  10. Zero-shot cross-lingual transfer of prompt-based tuning with a unified multilingual prompt

  11. Finetune like you pretrain: Improved finetuning of zero-shot vision models

  12. SemSup-XC: Semantic supervision for zero and few-shot extreme classification

  13. Zero- and few-shot event detection via prompt-based meta learning

  14. HINT: Hypernetwork instruction tuning for efficient zero- and few-shot generalisation

  15. What does the failure to reason with "respectively" in zero/few-shot settings tell us about language models? acl 2023

小樣本學(xué)習(xí)變體(12篇)

  1. FiT: Parameter efficient few-shot transfer learning for personalized and federated image classification

  2. Towards addressing label skews in one-shot federated learning

  3. Data-free one-shot federated learning under very high statistical heterogeneity

  4. Contrastive meta-learning for partially observable few-shot learning

  5. On the soft-subnetwork for few-shot class incremental learning

  6. Warping the space: Weight space rotation for class-incremental few-shot learning

  7. Neural collapse inspired feature-classifier alignment for few-shot class-incremental learning

  8. Learning with fantasy: Semantic-aware virtual contrastive constraint for few-shot class-incremental learning

  9. Few-shot class-incremental learning via class-aware bilateral distillation

  10. Glocal energy-based learning for few-shot open-set recognition

  11. Open-set likelihood maximization for few-shot learning

  12. Federated few-shot learning

數(shù)據(jù)集/基準(zhǔn)(5篇)

  1. FewNLU: Benchmarking state-of-the-art methods for few-shot natural language understanding

  2. Bongard-HOI: Benchmarking few-shot visual reasoning for human-object interactions

  3. Hard-Meta-Dataset++: Towards understanding few-shot performance on difficult tasks

  4. MEWL: Few-shot multimodal word learning with referential uncertainty

  5. UNISUMM and SUMMZOO: Unified model and diverse benchmark for few-shot summarization

掃碼添加小享,回復(fù)“小樣本160

免費(fèi)獲取全部論文+源代碼合集


爆肝160+篇!近四年小樣本學(xué)習(xí)(FSL)頂會(huì)論文分享,含2023最新的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
湄潭县| 西丰县| 张家界市| 西乌珠穆沁旗| 六盘水市| 健康| 徐州市| 云林县| 张掖市| 湘乡市| 凤阳县| 定襄县| 六安市| 寿阳县| 从江县| 枣阳市| 邵阳市| 安庆市| 九龙城区| 金堂县| 遂平县| 奉新县| 西乌珠穆沁旗| 西吉县| 上虞市| 新干县| 大英县| 峨边| 徐州市| 玉树县| 葫芦岛市| 上林县| 于都县| 永寿县| 建昌县| 昌吉市| 靖江市| 永修县| 南乐县| 星子县| 闸北区|