互助智能合約游戲開發(fā)源碼版丨FDF互助游戲智能合約系統(tǒng)開發(fā)(詳細(xì)及方案)
本質(zhì)上來說,智能合約是一段程序,它以計(jì)算機(jī)指令的方式實(shí)現(xiàn)了傳統(tǒng)合約的自動(dòng)化處理。智能合約程序不只是一個(gè)可以自動(dòng)執(zhí)行的計(jì)算機(jī)程序,它本身就是一個(gè)系統(tǒng)參與者,對(duì)接收到的信息進(jìn)行回應(yīng),可以接收和儲(chǔ)存價(jià)值,也可以向外發(fā)送信息和價(jià)值。
int TensorStatistic::_computeThreshold(const std::vector<float>&distribution){
const int targetBinNums=128;
int threshold=targetBinNums;
if(mThresholdMethod==THRESHOLD_KL){
float minKLDivergence=10000.0f;
float afterThresholdSum=0.0f;
//統(tǒng)計(jì)超過128以后(超過閾值)的個(gè)數(shù)afterThresholdSum
std::for_each(distribution.begin()+targetBinNums,distribution.end(),
[&](float n){afterThresholdSum+=n;});
for(int i=targetBinNums;i<mBinNumber;++i){//從128到2048,找到新的threshold
std::vector<float>quantizedDistribution(targetBinNums);
std::vector<float>candidateDistribution(i);
std::vector<float>expandedDistribution(i);需求及案例開發(fā)I59源碼2OO7設(shè)計(jì)3O69
//0~i-1的分布情況,之后的數(shù)據(jù)都列加到第i-1上,做飽和映射
std::copy(distribution.begin(),distribution.begin()+i,candidateDistribution.begin());
candidateDistribution[i-1]+=afterThresholdSum;
afterThresholdSum-=distribution<i>;
//大小i,重新映射到targetBinNums時(shí)的bin間隔
const float binInterval=(float)i/(float)targetBinNums;
//merge i bins to target bins
//[0,j]之間的分布,合并到[0,targetBinNums]大小的空間中,并保存在quantizedDistribution
for(int j=0;j<targetBinNums;++j){
//[start,end]是映射到128長度的直方圖中第j個(gè)bin所對(duì)應(yīng)的數(shù)據(jù)
const float start=j*binInterval;
const float end=start+binInterval;
//將超出左右范圍的數(shù)據(jù),按照距離兩端距離遠(yuǎn)近作為系數(shù),累加到當(dāng)前bin中
const int leftUpper=static_cast<int>(std::ceil(start));
if(leftUpper>start){案例及詳細(xì):MrsFu123
const float leftScale=leftUpper-start;
quantizedDistribution[j]+=leftScale*distribution[leftUpper-1];
}
const int rightLower=static_cast<int>(std::floor(end));
if(rightLower<end){
const float rightScale=end-rightLower;
quantizedDistribution[j]+=rightScale*distribution[rightLower];
}
//統(tǒng)計(jì)并累加在范圍內(nèi)的數(shù)據(jù)
std::for_each(distribution.begin()+leftUpper,distribution.begin()+rightLower,
[&](float n){quantizedDistribution[j]+=n;});
}