最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

Dirichlet卷積與Mobius變換

2021-12-27 10:06 作者:子瞻Louis  | 我要投稿

在數(shù)學(xué)中,經(jīng)常會遇到實(shí)數(shù)序列或是復(fù)數(shù)序列,如n%EF%BC%81,%5Ccos%20n

而在數(shù)論中,它們有另一個特殊的名字,即數(shù)論函數(shù)

我們先給出以下幾個定義:

  • 以正整數(shù)集為定義域的實(shí)值函數(shù)或復(fù)值函數(shù)稱為數(shù)論函數(shù),又叫算術(shù)函數(shù)

  • 具有一下性質(zhì)的數(shù)論函數(shù)f(n)稱為積性函數(shù)

    若gcd(a,b)=1(即a,b的最大公約數(shù)是1),則f(ab)=f(a)f(b)

  • 若對于任意兩個正整數(shù)都有上式成立,則f(n)稱為完全積性函數(shù)

由定義不難得出:若f(n)為積性函數(shù),則

f(a)%3Df(a%5Ccdot%201)%3Df(a)f(1)%5CRightarrow%20f(1)%3D1

設(shè)

%5Cmu%20(n)%20%3D%20%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Brcl%7D%0A1%2C%20%26%20%20n%3D1%20%5C%5C%20(-1)%5E%7Br%7D%2C%20%26%20n%E6%98%AFr%E4%B8%AA%E4%B8%8D%E5%90%8C%E7%B4%A0%E6%95%B0%E4%B9%8B%E7%A7%AF%20%5C%5C%0A0%2C%20%26%20%E5%85%B6%E4%BB%96%E6%83%85%E5%86%B5%0A%5Cend%7Barray%7D%5Cright.

即當(dāng)且僅當(dāng)n的素因子分解中有素數(shù)的大于二次乘方時%5Cmu%20(n)%3D0

不難發(fā)現(xiàn)%5Cmu(n)積性函數(shù)但非完全積性函數(shù),易得

%5Cmu%20(1)%3D1%2C%5Cmu(2)%3D-1%2C%5Cmu%20(3)%3D-1%2C%5Cmu(4)%20%3D0%2C%5Cmu%20(5)%20%3D-1%2C

%20%5Cmu%20(6)%20%3D1%2C%5Cmu(7)%3D-1%2C%5Cmu(8)%3D0%2C%5Cmu(9)%3D0%2C%5Cmu(10)%3D1%2C%E2%80%A6

Mobius函數(shù)是數(shù)論中經(jīng)常會出現(xiàn)的函數(shù),它有許多有用的性質(zhì)

Dirichlet卷積

我們來看下面這一和式

f(n)%3D%5Csum_%7Bd%5Cvert%20n%7Dg(d)h%5Cleft(%5Cfrac%7Bn%7D%7Bd%7D%5Cright)

式中%5Csum_%7Bd%5Cvert%20n%7D遍歷所有整除n的d(n的所有約數(shù)),g(n),h(n)都是非零積性函數(shù)

假設(shè)%5Cgcd(a%2Cb)%3D1,則

f(ab)%3D%5Csum_%7Bd%5Cvert%20ab%7Dg(d)h%5Cleft(%5Cfrac%7Bab%7D%7Bd%7D%5Cright)

%5Cgcd(a%2Cd)%3Du%2C%5Cgcd(b%2Cd)%3Dv,則uv%3Dd,于是

%5Cbegin%7Baligned%7Df(ab)%26%3D%5Csum_%7Bu%5Cvert%20a%7D%5Csum_%7Bv%5Cvert%20b%7Dg(uv)h%5Cleft(%5Cfrac%7Bab%7D%7Buv%7D%5Cright)%5C%5C%26%3D%5Csum_%7Bu%5Cvert%20a%7Dg(u)h%5Cleft(%5Cfrac%7Ba%7D%7Bu%7D%5Cright)%5Csum_%7Bv%5Cvert%20b%7Dg(v)h%5Cleft(%5Cfrac%7Bb%7D%7Bv%7D%5Cright)%5C%5C%26%3Df(a)f(b)%5Cend%7Baligned%7D

即得知了f(n)也是一積性函數(shù)?

要注意兩個完全積性函數(shù)的Dirichlet卷積不一定是完全積性函數(shù)

f(n)g(n)h(n)Dirichlet卷積,記為f(n)%3Dg*h(n),同數(shù)學(xué)分析中的卷積,它具有交換律與結(jié)合律:

首先,交換律顯然成立,下面證明結(jié)合律

f(n)%2Cg(n)%2Ch(n)為積性函數(shù),為了證明結(jié)合律,可以悄悄地Dirichlet卷積重新定

  • f*g(n)%3D%5Csum_%7Bn%3Dab%7Df(a)g(b)

其中%5Csum_%7Bn%3Dab%7D表實(shí)將n分解為兩個正整數(shù)的積后求和

容易驗(yàn)證它與原先的定義是等價的,于是

%5Cbegin%7Baligned%7D(f*g)(n)*h(n)%26%3D%5Csum_%7Bn%3Dab%7D(f*g)(a)h(b)%5C%5C%26%3D%5Csum_%7Bn%3Dab%7D%5Cleft(%5Csum_%7Ba%3Dcd%7Df(c)g(d)%5Cright)h(b)%5C%5C%26%3D%5Csum_%7Bn%3Dbcd%7Df(c)g(d)h(b)%5Cend%7Baligned%7D

同理可得

f(n)*(g*h)(n)%3D%5Csum_%7Bn%3Dabc%7Df(a)g(b)h(c)

%5CRightarrow%20(f*g)(n)*h(n)%3Df(n)*(g*h)(n)

g(n)%3D%5Cmu(n)f(n)%2Ch(n)%3D1,其中,f(n)是一非零積性函數(shù),因此,

g*h(n)%3D%5Csum_%7Bd%5Cvert%20n%7D%5Cmu%20(d)f(n)

也是一積性函數(shù)

有n的素因子分解n%3Dp_%7B1%7D%5E%7Ba_%7B1%7D%7Dp_%7B2%7D%5E%7Ba_%7B2%7D%7D%E2%80%A6p_%7Bt%7D%5E%7Ba_%7Bt%7D%7D,我們只需討論n的約數(shù)中無平方素因子的情況

f(n)積性,

%5Cbegin%7Baligned%7Dg*h(n)%26%3D1-(f(p_%7B1%7D)%2B%E2%80%A6%2Bf(p_%7Bt%7D))%2B%5Cleft(f(p_%7B1%7Dp_%7B2%7D)%2Bf(p_%7B1%7Dp_%7B3%7D)%2B%E2%80%A6%2Bf(p_%7Bt-1%7Dp_%7Bt%7D)%5Cright)-%E2%80%A6%5C%5C%26%2B(-1)%5Etf(p_1%E2%80%A6p_t)%5C%5C%26%3D%5Cprod_%7Bp%5Cvert%20n%7D(1-f(p))%5Cend%7Baligned%7D

其中?%5Cprod_%7Bp%5Cvert%20n%7D%20?遍歷n的全部素因子?■

若在上式中取f(n)%3D1,則可得到

%5Csum_%7Bd%5Cvert%20n%7D%5Cmu(d)%3D%5Cleft%5B%5Cfrac%7B1%7D%7Bn%7D%5Cright%5D%3D%20%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Brcl%7D%0A1%2C%20%26%20%20n%3D1%20%5C%5C%200%2C%20%26%20n%E2%89%A01%20%5Cend%7Barray%7D%5Cright.

再來看一個例子,令?1(n)%5Cequiv%201,

%5Ctilde%20%7B1%7D(n)%3D%5Csum_%7Bd%5Cvert%20n%7D1%3Dd(n)

d(n)為除數(shù)函數(shù)即n的所有約數(shù)的個數(shù)

若令E_%7Ba%7D(n)%3Dn%5E%7Ba%7D

我們還可以得到

%5Ctilde%7BE_%7Ba%7D%7D(n)%3D%5Csum_%7Bd%5Cvert%20n%7Dn%5E%7Ba%7D%3D%5Csigma_%7Ba%7D(n)%20

取a=0即為上式?

我們已經(jīng)討論過下式

%5Ctilde%20%5Cmu%20(n)%3D%5Cleft%5B%5Cfrac%7B1%7D%7Bn%7D%5Cright%5D%3D%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Brcl%7D%0A1%20%26%20n%3D1%20%5C%5C%200%20%26%20n%E2%89%A01%20%5C%5C%0A%5Cend%7Barray%7D%5Cright.

?稱他為單位示性函數(shù),記為%5Cvarepsilon%20(n)%3D%5Ctilde%20%5Cmu%20(n)

對任意數(shù)論函數(shù),皆有

f*%5Cvarepsilon(n)%3D%5Cvarepsilon*f(n)%3Df(n)

Mobius反演

f(n)為一數(shù)論函數(shù),定義?

g(n)%3D%5Csum_%7Bd%5Cvert%20n%7Df(d)

那么有

f(n)%3D%5Csum_%7Bd%5Cvert%20n%7D%5Cmu(d)g%5Cleft(%5Cfrac%7Bn%7D%7Bd%7D%5Cright)

該關(guān)系可以由Dirichlet卷積表示出,f(n)%3Dg*%5Cmu(n),我們不妨來推導(dǎo)一下

證明:只需證明g(n)%3Df*1(n)%5CRightarrow%20f(n)%3Dg*%5Cmu%20(n)

我們在g(n)%3Df*1(n)的兩邊同時卷積一個Mobius函數(shù)

%5Cbegin%7Baligned%7Dg*%5Cmu(n)%26%3D((f*1)*%5Cmu%20)(n)%5C%5C%26%3D(f*(%5Cmu*1))(n)%5C%5C%26%3Df*%5Cvarepsilon(n)%5C%5C%26%3Df(n)%5Cend%7Baligned%7D

下面來看一個有趣的性質(zhì):

%5Calpha(n)完全積性函數(shù),則

%5Calpha%5E%7B-1%7D(n)%3D%5Cmu(n)%5Calpha(n)

證明:因?yàn)樗峭耆e性的,%5Calpha(1)%3D1

%5Cbegin%7Baligned%7D(%5Cmu%20%5Calpha)*%5Calpha(n)%26%3D%5Csum_%7Bd%5Cvert%20n%7D%5Cmu(d)%5Calpha(d)%5Calpha%5Cleft(%5Cfrac%7Bn%7D%7Bd%7D%5Cright)%5C%5C%26%3D%5Csum_%7Bd%5Cvert%20n%7D%5Cmu(d)%5Calpha%5Cleft(d%5Ccdot%20%5Cfrac%7Bn%7D%7Bd%7D%5Cright)%5C%5C%26%3D%5Calpha(n)%5Csum_%7Bd%5Cvert%20n%7D%5Cmu(n)%5C%5C%26%3D%5Cvarepsilon(n)%5Calpha(n)%3D%5Cvarepsilon(n)%5Cend%7Baligned%7D

最后在兩邊卷積一個%5Calpha%5E%7B-1%7D(n),得

(%5Cmu%20%5Calpha)*(%5Calpha*%5Calpha%5E%7B-1%7D)(n)%3D%5Cmu(n)%5Calpha(n)%3D%5Calpha%5E%7B-1%7D(n)

接下來我們就要來構(gòu)造一個

我們已知Dirichlet卷積與所有數(shù)論函數(shù)構(gòu)成一個半群

又易知%5Cvarepsilon%20(n)為群中的單位元,因此上述半群其實(shí)是一個幺半群

因此,若我們能得出

%5Cforall%20f(1)%E2%89%A00%2C%5Cexists%20g(n)%2C%5Ctext%7Bsuch%20that%7D%20f*g(n)%3D%5Cvarepsilon(n)

則現(xiàn)在就能說所有滿足?f(1)%E2%89%A00?的數(shù)論函數(shù)的集合?D?關(guān)于Dirichlet卷積構(gòu)成一個群,我稱它為Dirichlet群

證明:之所以要求f(1)%E2%89%A00是因?yàn)閚=1時

f*g(1)%3Df(1)g(1)%3D%5Cvarepsilon(1)%3D1%5CRightarrow%20g(1)%3D%5Cfrac%7B1%7D%7Bf(1)%7D

下面我們討論n>1的情況,有%5Cvarepsilon(n)%3D0,又

%5Cbegin%7Baligned%7D%5Cvarepsilon(n)%26%3Df*g(n)%5C%5C%26%3D%5Csum_%7Bd%5Cvert%20n%7Df(d)g%5Cleft(%5Cfrac%7Bn%7D%7Bd%7D%5Cright)%5C%5C%26%3D%5Csum_%7Bd%5Cvert%20n%20%5C%5C%20d%E2%89%A01%7Df(d)g%5Cleft(%5Cfrac%7Bn%7D%7Bd%7D%5Cright)%2Bf(1)g(n)%5Cend%7Baligned%7D

所以

g(n)%3D-%5Cfrac%7B1%7D%7Bf(1)%7D%5Csum_%7Bd%5Cvert%20n%20%5C%5C%20d%E2%89%A01%7Df(d)g%5Cleft(%5Cfrac%7Bn%7D%7Bd%7D%5Cright)

g(n)f(n)Dirichlet逆,記為f%5E%7B-1%7D(n)

從中也可得知當(dāng)?f(1)%3D0?時?f(n)?不可逆

事實(shí)上有的地方為了區(qū)別于反函數(shù)一般不會這樣記,但我為了方便(偷懶)就這樣記了

廣義Mobius反演

上訴的Dirichlet卷積和Mobius反演僅限于數(shù)論函數(shù),我們不妨將其擴(kuò)展一下

首先我們來看下面這個映射
A是所以在%5B1%2C%2B%5Cinfty)有定義的實(shí)值函數(shù)(或復(fù)值函數(shù))構(gòu)成的集合,D是Dirichlet群

定義

  • %5Cbegin%7Baligned%7D%5Ccirc%20%3AD%5Ctimes%20A%26%5Crightarrow%20A%20%5C%5C%20%5Ccirc%20%3A(%5Calpha%2CF(x))%26%5Crightarrow%20%5Csum_%7B1%5Cleq%20n%5Cleq%20x%7D%5Calpha(n)F%5Cleft(%5Cfrac%7Bx%7D%7Bn%7D%5Cright)%5Cend%7Baligned%7D

%5Calpha%20%5Ccirc%20F(x)%3A%3D%5Ccirc(%5Calpha%2CF(x)),若無特殊說明%5Csum_%7Bn%5Cleq%20x%7D表示%5Csum_%7B1%5Cleq%20n%5Cleq%20x%7D

由定義不難得到,

%5Cvarepsilon%5Ccirc%20F(x)%3DF(x)

同時,結(jié)合律對該映射成立:

證明:設(shè)%5Calpha%2C%5Cbeta%5Cin%20D%2CF%5Cin%20A

%5Cbegin%7Baligned%7D%5Calpha%5Ccirc(%5Cbeta%5Ccirc%20F)(x)%26%3D%5Csum_%7Bn%5Cleq%20x%7D%5Calpha(n)%5Csum_%7Bm%5Cleq%5Cfrac%7Bx%7D%7Bn%7D%7D%5Cbeta(m)F%5Cleft(%5Cfrac%7Bx%7D%7Bmn%7D%5Cright)%5C%5C%26%3D%5Csum_%7Bmn%5Cleq%20x%7D%5Calpha(n)%5Cbeta(m)F%5Cleft(%5Cfrac%7Bx%7D%7Bmn%7D%5Cright)%5Cend%7Baligned%7D

做代換mn=k,則

%5Calpha%5Ccirc(%5Cbeta%5Ccirc%20F)(x)%3D%5Csum_%7Bk%5Cleq%20x%7D%5Cleft(%5Csum_%7Bk%3Dmn%7D%5Calpha(n)%5Cbeta(m)%5Cright)F%5Cleft(%5Cfrac%7Bx%7D%7Bk%7D%5Cright)%3D(%5Calpha*%5Cbeta)%5Ccirc%20F(x)

%5CRightarrow%5Ccirc(%5Calpha%2C%5Ccirc(%5Cbeta%2CF))%3D%5Ccirc(%5Calpha*%5Cbeta%2CF)

則該映射是DA上的群作用

廣義Mobius反演

G(x)%3D%5Calpha%5Ccirc%20F(x),則

F(x)%3D%5Calpha%5E%7B-1%7D%5Ccirc%20G(x)

證明:由結(jié)合性質(zhì)可得

%5Calpha%5E%7B-1%7D%5Ccirc(%5Calpha%5Ccirc%20F)(x)%3D(%5Calpha*%5Calpha%5E%7B-1%7D)%5Ccirc%20F(x)%3DF(x)

%5CRightarrow%20F(x)%3D%5Calpha%5E%7B-1%7D%5Ccirc%20G(x)

即得到了廣義反演公式:

  • G(x)%3D%5Csum_%7Bn%5Cleq%20x%7D%5Calpha(n)F%5Cleft(%5Cfrac%7Bx%7D%7Bn%7D%5Cright)%5CRightarrow%20F(x)%3D%5Csum_%7Bn%5Cleq%20x%7D%5Calpha%5E%7B-1%7D(n)G%5Cleft(%5Cfrac%7Bx%7D%7Bn%7D%5Cright)

特別的,若%5Calpha(n)是完全積性的,則

  • G(x)%3D%5Csum_%7Bn%5Cleq%20x%7D%5Calpha(n)F%5Cleft(%5Cfrac%7Bx%7D%7Bn%7D%5Cright)%5CRightarrow%20F(x)%3D%5Csum_%7Bn%5Cleq%20x%7D%5Cmu(n)%5Calpha(n)G%5Cleft(%5Cfrac%20xn%5Cright)

?只需證明在此情況下?%5Calpha%5E%7B-1%7D(n)%3D%5Cmu(n)%5Calpha(n)?,而前面我們已經(jīng)證明過它了■


Dirichlet卷積與Mobius變換的評論 (共 條)

分享到微博請遵守國家法律
门头沟区| 陆河县| 武安市| 义乌市| 兴和县| 赞皇县| 高密市| 西乌珠穆沁旗| 温州市| 青川县| 普安县| 杭锦旗| 东宁县| 林口县| 安陆市| 全南县| 滨州市| 沁源县| 贡觉县| 苍南县| 绵阳市| 北川| 全南县| 佳木斯市| 邳州市| 响水县| 绥滨县| 孙吴县| 阜平县| 长海县| 德安县| 深泽县| 木兰县| 黔西| 武宁县| 建瓯市| 汝阳县| 宁武县| 临沂市| 天峨县| 德江县|