KDD2023丨Recommendation論文合集

ACM?SIGKDD(國(guó)際數(shù)據(jù)挖掘與知識(shí)發(fā)現(xiàn)大會(huì),簡(jiǎn)稱KDD)會(huì)議始于1989年,是數(shù)據(jù)挖掘領(lǐng)域歷史最悠久、規(guī)模最大的國(guó)際頂級(jí)學(xué)術(shù)會(huì)議,也是首個(gè)引入大數(shù)據(jù)、數(shù)據(jù)科學(xué)、預(yù)測(cè)分析、眾包等概念的會(huì)議,每年吸引了大量數(shù)據(jù)挖掘、機(jī)器學(xué)習(xí)、大數(shù)據(jù)和人工智能等領(lǐng)域的研究學(xué)者、從業(yè)人員參與。
AMiner通過(guò)AI技術(shù),對(duì) KDD2023 收錄的會(huì)議論文進(jìn)行了分類整理,今日分享的是Recommendation主題論文!(由于篇幅關(guān)系,本篇只展現(xiàn)部分論文,點(diǎn)擊閱讀原文可直達(dá)KDD頂會(huì)頁(yè)面查看所有論文)
1.Adaptive Graph Contrastive Learning for Recommendation
鏈接:https://www.aminer.cn/pub/6466fafbd68f896efaeb7633/
2.Tree based Progressive Regression Model for Watch-Time Prediction in Short-video Recommendation
鏈接:https://www.aminer.cn/pub/648000a9d68f896efaa123eb/
3.Multi-channel Integrated Recommendation with Exposure Constraints
鏈接:https://www.aminer.cn/pub/646c3ad0d68f896efa5ce60f/
4.ReLoop2: Building Self-Adaptive Recommendation Models via Responsive Error Compensation Loop
鏈接:https://www.aminer.cn/pub/648bde68d68f896efaf81bd3/
5.Hierarchical Invariant Learning for Domain Generalization Recommendation
鏈接:https://www.aminer.cn/pub/64af9a073fda6d7f065a6d92/
6.Debiasing Recommendation by Learning Identifiable Latent Confounders
鏈接:https://www.aminer.cn/pub/63e9aa5e90e50fcafd133661/
7.Meta Graph Learning for Long-tail Recommendation
鏈接:https://www.aminer.cn/pub/64af9a033fda6d7f065a6963/
8.PGLBox: Multi-GPU Graph Learning Framework for Web-Scale Recommendation
鏈接:https://www.aminer.cn/pub/64af9a043fda6d7f065a6a90/
9.Impatient Bandits: Optimizing Recommendations for the Long-Term Without Delay
鏈接:https://www.aminer.cn/pub/64af9a063fda6d7f065a6b9c/
10.Privacy Matters: Vertical Federated Linear Contextual Bandits for Privacy Protected Recommendation
鏈接:https://www.aminer.cn/pub/64af9a0a3fda6d7f065a702d/
11.Generative Flow Network for Listwise Recommendation
鏈接:https://www.aminer.cn/pub/64af99fc3fda6d7f065a6275/
12.A Sublinear Time Algorithm for Opinion Optimization in Directed Social Networks via Edge Recommendation
鏈接:https://www.aminer.cn/pub/64af99fc3fda6d7f065a62a4/
13.Hierarchical Projection Enhanced Multi-behavior Recommendation
鏈接:https://www.aminer.cn/pub/64af99fe3fda6d7f065a6424/
14.SAMD: An Industrial Framework for Heterogeneous Multi-Scenario Recommendation
鏈接:https://www.aminer.cn/pub/64af99fe3fda6d7f065a6481/
15.M5: Multi-Modal Multi-Interest Multi-Scenario Matching for Over-the-Top Recommendation
鏈接:https://www.aminer.cn/pub/64af9a033fda6d7f065a691f/
16.Modeling Dual Period-Varying Preferences for Takeaway Recommendation
鏈接:https://www.aminer.cn/pub/64af9a053fda6d7f065a6b8b/
17.Reconsidering Learning Objectives in Unbiased Recommendation: A Distribution Shift Perspective
鏈接:https://www.aminer.cn/pub/64af9a083fda6d7f065a6db2/
18.Who Should Be Given Incentives? Counterfactual Optimal Treatment Regimes Learning for Recommendation
鏈接:https://www.aminer.cn/pub/64af9a083fda6d7f065a6dd5/

如何使用ChatPaper讀文獻(xiàn)?
為了讓更多科研人更高效的獲取文獻(xiàn)知識(shí),AMiner基于GLM-130B大模型能力,開發(fā)了Chatpaper,幫助科研人快速提高檢索、閱讀論文效率,獲取最新領(lǐng)域研究動(dòng)態(tài),讓科研工作更加游刃有余。

ChatPaper是一款集檢索、閱讀、知識(shí)問(wèn)答于一體的對(duì)話式私有知識(shí)庫(kù),AMiner希望通過(guò)技術(shù)的力量,讓大家更加高效地獲取知識(shí)。
ChatPaper:https://www.aminer.cn/chat/g