最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

M?bius(莫比烏斯函數(shù))的推廣形式

2022-10-04 19:58 作者:加餐勺  | 我要投稿

以下內(nèi)容以及演繹思路參考自李文威的《代數(shù)學(xué)方法》卷1第5章

初識自然數(shù)上關(guān)于"|(整除)"關(guān)系的莫比烏斯反演時總覺得不夠自然,看完此章后終意平。

(note:閱讀需要有一點點的抽象代數(shù)基礎(chǔ)(大概?

首先給出偏序集的定義:

偏序集?(P%2C%5Cleq%20)?,P是一個集合,%5Cleq是一個二元關(guān)系,滿足:

反身性:

%5Cforall%20x%20%5Cin%20P%2C%20x%20%5Cleq%20x

傳遞性:

x%20%5Cleq%20y%2Cy%5Cleq%20z%20%5Cimplies%20x%5Cleq%20z

反稱性:

x%5Cleq%20y%20%2C%20y%5Cleq%20x%20%5Cimplies%20x%3Dy


若?(P%2C%5Cleq%20)是一個偏序集,且?%5Cforall%20(x%2Cy)%5Cin%20P%5E2%20%2Cx%20%5Cleq%20y,有:

%5Bx%2Cy%5D%3D%5C%7Bz%20%5Cin%20P%7Cx%5Cleq%20z%5Cleq%20y%20%5C%7D為有限集

那么稱 該偏序集為一個局部有限偏序集。


我們在一個局部有限偏序集上(P%2C%5Cleq%20)?構(gòu)造環(huán)結(jié)構(gòu)如下:

映射

f%3AP%5E2%20%5Crightarrow%20Q%2Cf(x%2Cy)%5Cin%20Q%EF%BC%8Cx%20%5Cleq%20y? ,其中Q為我們熟知的有理數(shù)域

所有的f組成一個集合I(P%2C%5Cleq),在其上定義加法運算"+"與乘法運算"%5Ccirc%20"

(f%2Bg)(x%2Cy)%3Df(x%2Cy)%2Bg(x%2Cy)

(f%5Ccirc%20g)(x%2Cy)%3D%5Csum_%7Bz%20%5Cin%20%5Bx%2Cy%5D%7Df(x%2Cz)*g(z%2Cy)

顯然I(P%2C%5Cleq)中關(guān)于加法是封閉的結(jié)合的,交換的,零元為

0(x%2Cy)%3D0%20%5Cin%20Q%2C%20%5Cforall%20(x%2Cy)%5Cin%20P%5E2

f?的加法逆元為f'(x%2Cy)%3D-f(x%2Cy)%2C%5Cforall%20(x%2Cy)%5Cin%20P%5E2

所以(I(P%2C%5Cleq)%2C%2B)為交換群;

關(guān)于%5Ccirc,封閉是顯然的,下證結(jié)合律:

%5Cforall%20h%2Cf%2Cg%20%5Cin%20I(P%2C%5Cleq)%EF%BC%8Cx%2Cy%5Cin%20P%2Cx%5Cleq%20y%EF%BC%9A

(hf)g(x%2Cy)%3D%5Csum_%7Bz%20%5Cin%20%5Bx%2Cy%5D%7D(hf)(x%2Cz)*g(z%2Cy)%0A%3D%5Csum_%7Bz%20%5Cin%20%5Bx%2Cy%5D%7D(%5Csum_%7Bt%5Cin%20%5Bx%2Cz%5D%7Dh(x%2Ct)f(t%2Cz))*g(z%2Cy)

%3D%5Csum_%7Bx%5Cleq%20t%5Cleq%20z%20%5Cleq%20y%7Dh(x%2Ct)f(t%2Cz)g(z%2Cy)%3D%5Csum_%7Bt%5Cin%20%5Bx%2Cy%5D%7Dh(x%2Ct)(%5Csum_%7Bz%5Cin%20%5Bt%2Cy%5D%7Df(t%2Cz)g(z%2Cy))

%3D%5Csum_%7Bt%5Cin%20%5Bx%2Cy%5D%7Dh(x%2Ct)(fg)(t%2Cy)%3Dh(fg)(x%2Cy)%0A

(note:局部有限性使得上述等式的成立

我們再定義

%5Cdelta%20(x%2Cy)%3D0%2Cif%20%5C%3B%20x%20%5Cneq%20y%3B%5Cdelta%20(x%2Cy)%3D1%2Cif%20%5C%3B%20x%20%3D%20y

容易驗證此%5Cdelta%20(x%2Cy)%E4%B8%BAI(P%2C%5Cleq)中的乘法單位元。

綜上R%3D(I(P%2C%5Cleq)%2C%2B%2C%5Ccirc)為幺環(huán)。

%5Cforall%20f%20%5Cin%20R

首先給出3個等價的性質(zhì):

  1. f有左逆元%253D%255Csum_%257Bt%255Cin%2520%255Bx%252Cy%255D%257Dh(x%252Ct)(fg)(t%252Cy)%250A

  2. %5Cforall%20x%20%5Cin%20P%2Cf(x%2Cx)%20%5Cneq%200

  3. f有右逆元

proof:

定義:

g(x%2Cx)%3D%5Cfrac%7B1%7D%7Bf(x%2Cx)%7D

g(x%2Cy)f(y%2Cy)%3D-%5Csum_%7Bx%5Cleq%20z%3Cy%7Dg(x%2Cz)f(z%2Cy)

當(dāng)(2.)成立時對任意f唯一的確定了g

顯然g%5Ccirc%20f%20%3D%5Cdelta?,由逆元的唯一性(1.)%5Ccong%20(2.)

右逆元形式可類似構(gòu)造,并且易知左逆元就是右逆元。

現(xiàn)在在R上考慮元素%5Cvarsigma%20

%5Czeta%20(x%2Cy)%3D1%2C%5Cforall%20x%20%5Cleq%20y%2C(x%2Cy)%20%5Cin%20P%5E2

顯然%5Czeta%20%5Cin%20R

終于,我們可以定義莫比烏斯(M?bius)函數(shù)了:

def%20%5C%3B%20%5Cmu%20%3D%5Cmu%20_p%20%5Cin%20R%3A%0A%5Cmu%20%3D%5Czeta%5E%7B-1%7D%20%0A

當(dāng)然的根據(jù)定義有:

%5Csum_%7Bz%5Cin%20%5Bx%2Cy%5D%7D%5Cmu(x%2Cz)%3D%5Csum_%7Bz%5Cin%20%5Bx%2Cy%5D%7D%5Cmu(z%2Cy)%3D%5Cdelta(x%2Cy)

現(xiàn)在我們來回顧莫比烏斯反演:

設(shè)(A%2C%2B)為任意交換群,(P%2C%5Cleq)為偏序集滿足:

%5Cforall%20x%20%5Cin%20P%2C%5C%7By%5Cin%20P%7Cy%5Cleq%20x%5C%7D為有限集,

顯見(P%2C%5Cleq)為局部有限偏序集。

給出函數(shù)f%2Cg%3AP%5Crightarrow%20A,則

f(x)%3D%5Csum_%7By%20%5Cleq%20x%7Dg(y)%5Ciff%20g(x)%3D%5Csum_%7By%5Cleq%20x%7Df(y)%5Cmu(y%2Cx).

(note:這里%5Cmu%20f可以視作QA上的群作用,或者將A看作Q上的向量空間)

證明方法與經(jīng)典情形類似,僅證左推右:

%5Csum_%7By%5Cleq%20x%7Df(y)%5Cmu(y%2Cx)%3D%5Csum_%7Bz%5Cleq%20y%5Cleq%20x%7Dg(z)%5Cmu(y%2Cx)%3D%5Csum_%7Bz%5Cleq%20x%7D(%5Csum_%7By%5Cin%20%5Bz%2Cx%5D%7D%5Cmu(y%2Cx))g(z)

%3D%5Csum_%7Bz%5Cleq%20x%7D%5Cdelta(z%2Cx)g(z)%3Dg(x)

根據(jù)交換群A上的運算可以寫成乘積形式或者是和式,它們的本質(zhì)沒有區(qū)別。

此即為推廣形式的莫比烏斯反演,現(xiàn)在我們希望用它來得到Z_%7B%5Cgeq%201%7D%3D%5C%7Bn%5Cin%20Z%7Cn%5Cgeq%201%5C%7D上的經(jīng)典情形的莫比烏斯反演。

首先引入直積形式:

考慮一族局部有限偏序集%5C%7B(P_i%2C%5Cleq_i)%5C%7D_%7Bi%3D1%7D%5En

P%3D%5Cprod_%7Bi%3D1%7D%5En%20P_i%2Cx%3D(x_1%2C...%2Cx_n)%5Cin%20P%2C%5Cforall%20i%20%2Cx_i%5Cin%20P_i

x%5Cleq%20y%5Ciff%20%20%5Cforall%20i%2Cx_i%5Cleq_i%20y_i

顯見(P%2C%5Cleq)為局部有限偏序集

簡記x%3D(x_i)_i

P上定義%5Cmu(x%2Cy)%3D%5Cprod_%7Bi%3D1%7D%5En%5Cmu_%7BP_i%7D(x_i%2Cy_i)

易見

%5Csum_%7Bz%5Cin%20%5Bx%2Cy%5D%7D%3D%5Csum_%7Bz_1%20%5Cin%20%5Bx_1%2Cy_1%5D%7D...%5Csum_%7Bz_n%20%5Cin%20%5Bx_n%2Cy_n%5D%7D

這個%5Cmu(x%2Cy)確實為前述定義的莫比烏斯函數(shù)。

現(xiàn)在分別在(Z_%7B%5Cgeq0%7D%2C%5Cleq)(Z_%7B%5Cgeq1%7D%2C%7C)上考慮:

大于0的所有整數(shù)關(guān)于數(shù)的小于等于關(guān)系當(dāng)然構(gòu)成局部有限偏序集,而大于等于1的整數(shù)關(guān)于數(shù)的整除關(guān)系也構(gòu)成局部偏序集。

(Z_%7B%5Cgeq0%7D%2C%5Cleq)上考慮%5Cmu(n%2Cm)%3D1%2Cif%5C%3Bn%3Dm%20%5C%5C%0A%5Cmu(n%2Cm)%3D-1%2Cif%5C%3Bn-m%3D-1%20%5C%5C%0A%5Cmu(n%2Cm)%3D0%2C%E5%85%B6%E4%BB%96

那么易證%5Cmu%E4%B8%BA(Z_%7B%5Cgeq0%7D%2C%5Cleq)導(dǎo)出的莫比烏斯函數(shù)。

現(xiàn)在來構(gòu)造一個%5Cprod_%7Bp%7D(Z_%7B%5Cge0%7D%2C%5Cle)%5Crightarrow%20(Z_%7B%5Cge1%7D%2C%7C)的雙射

任意一個大于0的整數(shù)n有唯一的有限的素因子分解

n%3D%5Cprod_p%20p%5E%7Bn_p%7D,那么(n_p)_p%5Crightarrow%20%5Cprod_p%20p%5E%7Bn_p%7D為雙射

(note:若要嚴(yán)謹?shù)谋硎鲞@個雙射以避免有限與可列的混淆,其實要構(gòu)造一個幾乎處處收斂于該積偏序的偏序,但引入測度等概念過于麻煩,即使不引入也不影響對該雙射的理解)

該映射將%5Cprod_%7Bp%7D(Z_%7B%5Cge0%7D%2C%5Cle)上的莫比烏斯函數(shù)映射至熟知的情形:

%5Cmu((n_p)_p%2C(m_p)_p)%3D%5Cprod_p%20%5Cmu_%7B(Z_%7B%5Cge0%7D%2C%5Cle)%7D(n_p%2Cm_p)

考慮n%3D%5Cprod_p%20p%5E%7Bn_p%7Dm%3D%5Cprod_p%20p%5E%7Bm_p%7D在同一個素因子p上的冪,m_p%3Dn_p時該處的莫比烏斯函數(shù)返回1,冪次相差1且m_p%3En_p時該處的莫比烏斯函數(shù)返回-1,其他情形返回0,有一個0則整個%5Cprod_p%20%5Cmu_%7B(Z_%7B%5Cge0%7D%2C%5Cle)%7D(n_p%2Cm_p)%3D0,這相當(dāng)于是說,n不整除m時,以及%5Cfrac%7Bm%7D%7Bn%7D有平方素因子時%5Cmu((n_p)_p%2C(m_p)_p)%3D0.

這其實就是我們熟知的莫比烏斯函數(shù),我們直接給出它在(Z_%7B%5Cge1%7D%2C%7C)上的形式:

%5Cmu(1%2Cn)%3D%5Cmu(n)%2C%E9%82%A3%E4%B9%88%5Cmu(d%2Cn)%3D%5Cmu(n%2Fd)

%5Cmu(n)%3D(-1)%5E%7Bn%E7%9A%84%E7%B4%A0%E5%9B%A0%E5%AD%90%E4%B8%AA%E6%95%B0%7D%2Cif%5C%3Bn%E6%97%A0%E4%B8%8D%E7%AD%89%E4%BA%8E1%E7%9A%84%E5%B9%B3%E6%96%B9%E5%9B%A0%E5%AD%90%5C%5C%0A%5Cmu(n)%3D0%2C%E5%85%B6%E4%BB%96

對于交換群(A%2C%2B)以及任意函數(shù)f%2Cg%3AP%5Crightarrow%20A

%5Cforall%20n%20%5C%3Bf(n)%3D%5Csum_%7Bd%20%7Cn%7Dg(d)%5Ciff%20g(n)%3D%5Csum_%7Bd%7Cn%7Df(d)%5Cmu(n%2Fd).

此為大家熟知的形式,它的應(yīng)用前人之述備矣。

結(jié)束.

關(guān)于本人的個中推導(dǎo)以及理解也可能有錯誤的地方,歡迎指正與討論!

聽說李文威老師的《代數(shù)學(xué)方法》計劃選入北大本科的代數(shù)教材,可太勁了;我個人覺得《代數(shù)學(xué)方法》比起教材更像一件藝術(shù)品就是了。

有空再更這本上其他有趣又精妙的內(nèi)容吧,感覺這本用很多更能展現(xiàn)本質(zhì)的等價定義讓我重新認識了一些代數(shù)結(jié)構(gòu),可以說是受益匪淺。


M?bius(莫比烏斯函數(shù))的推廣形式的評論 (共 條)

分享到微博請遵守國家法律
伊宁市| 梅河口市| 海兴县| 瑞丽市| 北川| 楚雄市| 阳西县| 鹿泉市| 肥乡县| 玛沁县| 措美县| 丰城市| 古丈县| 界首市| 沂水县| 阿拉善左旗| 凌云县| 南安市| 亳州市| 鄢陵县| 龙岩市| 芜湖县| 界首市| 湘潭市| 乐亭县| 开江县| 梨树县| 泸水县| 永新县| 双城市| 建阳市| 明溪县| 隆化县| 武陟县| 江孜县| 宝山区| 普洱| 自贡市| 托克托县| 张家界市| 巴林左旗|