最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

Practice_2_generalised Schl?milch's series

2022-04-12 00:47 作者:Baobhan_Sith  | 我要投稿

Schl?milch's series is a kind of series defined by

f%5Cleft(%20x%20%5Cright)%20%3Da_0%2B%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7Ba_nJ_0%5Cleft(%20nx%20%5Cright)%7D%0A

It has a?generalised definition which is given by Bessel function of the first kind of order?%5Cnu

and Struve function?of order?%5Cnu.

f%5Cleft(%20x%20%5Cright)%20%3D%5Cfrac%7Ba_0%7D%7B2%5CGamma%20%5Cleft(%201%2B%5Cnu%20%5Cright)%7D%2B%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7Ba_nJ_%7B%5Cnu%7D%5Cleft(%20nx%20%5Cright)%20%2Bb_n%5Cmathrm%7BH%7D_%7B%5Cnu%7D%5Cleft(%20nx%20%5Cright)%7D%7B%5Cleft(%20%5Cfrac%7B1%7D%7B2%7Dnx%20%5Cright)%20%5E%7B%5Cnu%7D%7D%7D%0A

Consider?two series?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7BJ_%7B%5Cnu%7D%5Cleft(%20an%20%5Cright)%20%5Cleft(%20-1%20%5Cright)%20%5En%7D%7Bn%5E%7B%5Cnu%20%2B2s%7D%7D%7D%0A?and?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7BJ_%7B%5Cnu%7D%5Cleft(%20an%20%5Cright)%7D%7Bn%5E%7B%5Cnu%20%2B2s%7D%7D%7D%0A

Denote?P_s%5Cleft(%20%5Cnu%20%2Ca%20%5Cright)%20%3D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7BJ_%7B%5Cnu%7D%5Cleft(%20an%20%5Cright)%20%5Cleft(%20-1%20%5Cright)%20%5En%7D%7Bn%5E%7B%5Cnu%20%2B2s%7D%7D%7D%0A?,?Q_s%5Cleft(%20%5Cnu%20%2Ca%20%5Cright)%20%3D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7BJ_%7B%5Cnu%7D%5Cleft(%20an%20%5Cright)%7D%7Bn%5E%7B%5Cnu%20%2B2s%7D%7D%7D%0A

Obviously, these two series are?generalised?Schl?milch's series

Now let us evaluate their values.

It can be shown that

P_s%5Cleft(%20%5Cnu%20%2Ca%20%5Cright)%20%3D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7BJ_%7B%5Cnu%7D%5Cleft(%20an%20%5Cright)%20%5Cleft(%20-1%20%5Cright)%20%5En%7D%7Bn%5E%7B%5Cnu%20%2B2s%7D%7D%7D%0A%0A

%0A%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20-1%20%5Cright)%20%5Es%5Csum_%7Bm%3D0%7D%5Es%7B%5Cfrac%7B%5Cleft(%20%5Cfrac%7Ba%7D%7B2%7D%20%5Cright)%20%5E%7B2s-2m%2B%5Cnu%7D%5Cleft(%202%5E%7B2m%7D-2%20%5Cright)%20%5Cpi%20%5E%7B2m%7DB_%7B2m%7D%7D%7B%5Cleft(%20s-m%20%5Cright)%20!%5CGamma%20%5Cleft(%20s-m%2B%5Cnu%20%2B1%20%5Cright)%20%5Cleft(%202m%20%5Cright)%20!%7D%7D

Q_s%5Cleft(%20%5Cnu%20%2Ca%20%5Cright)%20%3D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7BJ_%7B%5Cnu%7D%5Cleft(%20an%20%5Cright)%7D%7Bn%5E%7B%5Cnu%20%2B2s%7D%7D%7D%0A

%0A%3D%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5E%7Bs%2B1%7D%7D%7B2%7D%5Csum_%7Bm%3D0%7D%5Es%7B%5Cfrac%7B%5Cleft(%20%5Cfrac%7Ba%7D%7B2%7D%20%5Cright)%20%5E%7B2s-2m%2B%5Cnu%7D%5Cleft(%202%5Cpi%20%5Cright)%20%5E%7B2m%7DB_%7B2m%7D%7D%7B%5Cleft(%20s-m%20%5Cright)%20!%5CGamma%20%5Cleft(%20s-m%2B%5Cnu%20%2B1%20%5Cright)%20%5Cleft(%202m%20%5Cright)%20!%7D%7D%2B%5Cfrac%7B%5Cpi%7D%7B2%7D%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5Es%5Cleft(%20%5Cfrac%7Ba%7D%7B2%7D%20%5Cright)%20%5E%7B2s%2B%5Cnu%20-1%7D%7D%7B%5CGamma%20%5Cleft(%20s%2B%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%20%5CGamma%20%5Cleft(%20s%2B%5Cnu%20%2B%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%7D%0A

these two formulas hold when?s%5Cin%20%5Cmathbb%7BZ%7D%20%5E%2B%2C0%5Cleqslant%20a%5Cleqslant%20%5Cpi%2C%5Cnu%2B2s%3E%5Cfrac12%0A

Proof:

Firstly, let us calculate?P_s%5Cleft(%20%5Cnu%20%2Ca%20%5Cright)%20%3D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7BJ_%7B%5Cnu%7D%5Cleft(%20an%20%5Cright)%20%5Cleft(%20-1%20%5Cright)%20%5En%7D%7Bn%5E%7B%5Cnu%20%2B2s%7D%7D%7D%0A

The Mellin transform of Bessel function is given by

%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cfrac%7BJ_%7B%5Cnu%7D%5Cleft(%20x%20%5Cright)%7D%7Bx%5E%7B%5Cnu%7D%7Dx%5E%7B%5Cmu%20-1%7Ddx%7D%3D2%5E%7B%5Cmu%20-%5Cnu%20-1%7D%5Cfrac%7B%5CGamma%20%5Cleft(%20%5Cfrac%7B%5Cmu%7D%7B2%7D%20%5Cright)%7D%7B%5CGamma%20%5Cleft(%20%5Cnu%20%2B1-%5Cfrac%7B%5Cmu%7D%7B2%7D%20%5Cright)%7D%0A

Hence, its inversion formula is given by

%5Cfrac%7BJ_%7B%5Cnu%7D%5Cleft(%20ax%20%5Cright)%7D%7Bx%5E%7B%5Cnu%7D%7D%3D%5Cfrac%7B1%7D%7B2%5Cpi%20i%7Da%5E%7B%5Cnu%7D%5Cint_%7B%5Csigma%20-i%5Cinfty%7D%5E%7B%5Csigma%20%2Bi%5Cinfty%7D%7B2%5E%7B%5Cmu%20-%5Cnu%20-1%7D%5Cfrac%7B%5CGamma%20%5Cleft(%20%5Cfrac%7B%5Cmu%7D%7B2%7D%20%5Cright)%7D%7B%5CGamma%20%5Cleft(%20%5Cnu%20%2B1-%5Cfrac%7B%5Cmu%7D%7B2%7D%20%5Cright)%7Da%5E%7B-%5Cmu%7Dx%5E%7B-%5Cmu%7Dd%5Cmu%7D%0A

Plug the inversion formula?into P_s%5Cleft(%20%5Cnu%20%2Ca%20%5Cright), and exchange the order of integration and summation.

%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5EnJ_%7B%5Cnu%7D%5Cleft(%20an%20%5Cright)%7D%7Bn%5E%7B%5Cnu%20%2B2s%7D%7D%7D%3D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B1%7D%7B2%5Cpi%20i%7Da%5E%7B%5Cnu%7D%5Cint_%7B%5Csigma%20-i%5Cinfty%7D%5E%7B%5Csigma%20%2Bi%5Cinfty%7D%7B2%5E%7B%5Cmu%20-%5Cnu%20-1%7D%5Cfrac%7B%5CGamma%20%5Cleft(%20%5Cfrac%7B%5Cmu%7D%7B2%7D%20%5Cright)%7D%7B%5CGamma%20%5Cleft(%20%5Cnu%20%2B1-%5Cfrac%7B%5Cmu%7D%7B2%7D%20%5Cright)%7Da%5E%7B-%5Cmu%7D%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5En%7D%7Bn%5E%7B%5Cmu%20%2B2s%7D%7Dd%5Cmu%7D%7D%0A

%3D-%5Cfrac%7B1%7D%7B2%5Cpi%20i%7Da%5E%7B%5Cnu%7D%5Cint_%7B%5Csigma%20-i%5Cinfty%7D%5E%7B%5Csigma%20%2Bi%5Cinfty%7D%7B2%5E%7B%5Cmu%20-%5Cnu%20-1%7D%5Cfrac%7B%5CGamma%20%5Cleft(%20%5Cfrac%7B%5Cmu%7D%7B2%7D%20%5Cright)%7D%7B%5CGamma%20%5Cleft(%20%5Cnu%20%2B1-%5Cfrac%7B%5Cmu%7D%7B2%7D%20%5Cright)%7D%5Cleft(%201-%5Cfrac%7B1%7D%7B2%5E%7B%5Cmu%20%2B2s-1%7D%7D%20%5Cright)%20%5Czeta%20%5Cleft(%20%5Cmu%20%2B2s%20%5Cright)%20a%5E%7B-%5Cmu%7Dd%5Cmu%20%5C%2C%5C%2C%7D%0A

where?%5Csigma%20%2B2s%3E0%0A

Denote?f%5Cleft(%20%5Cmu%20%5Cright)%20%3D2%5E%7B%5Cmu%20-%5Cnu%20-1%7D%5Cfrac%7B%5CGamma%20%5Cleft(%20%5Cfrac%7B%5Cmu%7D%7B2%7D%20%5Cright)%7D%7B%5CGamma%20%5Cleft(%20%5Cnu%20%2B1-%5Cfrac%7B%5Cmu%7D%7B2%7D%20%5Cright)%7D%5Cleft(%201-%5Cfrac%7B1%7D%7B2%5E%7B%5Cmu%20%2B2s-1%7D%7D%20%5Cright)%20%5Czeta%20%5Cleft(%20%5Cmu%20%2B2s%20%5Cright)%20a%5E%7B-%5Cmu%7D%0A%0A

Note that?f(%5Cmu) has simple poles at?0%2C-2%2C-4...-2s

Hence, residue theorem implies

%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5EnJ_%7B%5Cnu%7D%5Cleft(%20an%20%5Cright)%7D%7Bn%5E%7B%5Cnu%20%2B2s%7D%7D%7D%3D-%5Csum_%7Bn%3D0%7D%5Es%7Ba%5E%7B%5Cnu%7D2%5E%7B-2n-%5Cnu%7D%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5Ena%5E%7B2n%7D%7D%7Bn!%5CGamma%20%5Cleft(%20%5Cnu%20%2B1%2Bn%20%5Cright)%7D%5Cleft(%201-%5Cfrac%7B1%7D%7B2%5E%7B-2n%2B2s-1%7D%7D%20%5Cright)%20%5Czeta%20%5Cleft(%202s-2n%20%5Cright)%7D%0A

%3D%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5Es%7D%7B2%7D%5Csum_%7Bn%3D0%7D%5Es%7B%5Cfrac%7B%5Cleft(%20%5Cfrac%7Ba%7D%7B2%7D%20%5Cright)%20%5E%7B2s-2n%2B%5Cnu%7D%5Cleft(%202%5E%7B2n%7D-2%20%5Cright)%20%5Cpi%20%5E%7B2n%7DB_%7B2n%7D%7D%7B%5Cleft(%20s-n%20%5Cright)%20!%5CGamma%20%5Cleft(%20%5Cnu%20%2B1%2Bs-n%20%5Cright)%20%5Cleft(%202n%20%5Cright)%20!%7D%7D%0A


Similarly, the other series?Q_s%5Cleft(%20%5Cnu%20%2Ca%20%5Cright) can be evaluated via the same approach.

After a cumbersome but?mechanical process, we can obtain

Q_s%5Cleft(%20%5Cnu%20%2Ca%20%5Cright)%20%3D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7BJ_%7B%5Cnu%7D%5Cleft(%20an%20%5Cright)%7D%7Bn%5E%7B%5Cnu%20%2B2s%7D%7D%7D%0A

%3D%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5E%7Bs%2B1%7D%7D%7B2%7D%5Csum_%7Bm%3D0%7D%5Es%7B%5Cfrac%7B%5Cleft(%202%5Cpi%20%5Cright)%20%5E%7B2m%7DB_%7B2m%7D%7D%7B%5Cleft(%20s-m%20%5Cright)%20!%5CGamma%20%5Cleft(%20s-m%2B%5Cnu%20%2B1%20%5Cright)%20%5Cleft(%202m%20%5Cright)%20!%7D%5Cleft(%20%5Cfrac%7Ba%7D%7B2%7D%20%5Cright)%20%5E%7B2s-2m%2B%5Cnu%7D%7D%2B%5Cfrac%7B%5Cpi%7D%7B2%7D%5Cfrac%7B%5Cleft(%20-1%20%5Cright)%20%5Es%5Cleft(%20%5Cfrac%7Ba%7D%7B2%7D%20%5Cright)%20%5E%7B2s%2B%5Cnu%20-1%7D%7D%7B%5CGamma%20%5Cleft(%20s%2B%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%20%5CGamma%20%5Cleft(%20s%2B%5Cnu%20%2B%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%7D%0A

Practice_2_generalised Schl?milch's series的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
康保县| 沂水县| 南汇区| 西安市| 遂昌县| 文水县| 九龙城区| 台南市| 措美县| 蒙山县| 会理县| 咸丰县| 十堰市| 新余市| 新竹县| 蓬莱市| 瑞金市| 苍梧县| 化州市| 怀仁县| 株洲县| 星子县| 江永县| 宣城市| 息烽县| 盘锦市| 澄江县| 龙山县| 扶绥县| 天镇县| 大田县| 咸阳市| 长春市| 彰化市| 墨江| 搜索| 定边县| 阳山县| 油尖旺区| 朔州市| 铜鼓县|