最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊

【眉山論道】都知道“薛定諤的貓”,但很少人知道薛定諤奠基了復(fù)雜科學(xué)

2022-07-16 08:38 作者:老頑童崔坤  | 我要投稿

運(yùn)用數(shù)學(xué)歸納法證明:每個(gè)大于等于9的奇數(shù)都是3+兩個(gè)奇素?cái)?shù)之和


崔坤


中國青島即墨,266200,E-mail:cwkzq@126.com


摘要:


數(shù)學(xué)家劉建亞在《哥德巴赫猜想與潘承洞》中說:“我們可以把這個(gè)問題反過來思考, 已知奇數(shù)N可以表成三個(gè)素?cái)?shù)之和, 假如又能證明


這三個(gè)素?cái)?shù)中有一個(gè)非常小,譬如說第一個(gè)素?cái)?shù)可以總?cè)?, 那么我們也就證明了偶數(shù)的哥德巴赫猜想。”,


直到2013年才有秘魯數(shù)學(xué)家哈羅德賀歐夫格特徹底證明了三素?cái)?shù)定理。


關(guān)鍵詞:三素?cái)?shù)定理,奇素?cái)?shù),加法交換律結(jié)合律


中圖分類號(hào):O156 文獻(xiàn)標(biāo)識(shí)碼: A


Mathematical induction proves that every odd number greater than or equal to 9 is the sum of 3 + two odd prime numbers


abstract:Mathematician Liu Jianya said in "Goldbach Conjecture and Pan Chengdong": "We can think about this problem in


reverse. Knowing that the odd number N can be expressed as the sum of three prime numbers, if it can be proved that one of


the three prime numbers is very Small, for example, the first prime number can always be 3, then we have proved


Goldbach’s conjecture for even numbers.” It was not until 2013 that Peruvian mathematician Harold Hoofgert completely


proved the three prime number theorem.


keywords:Triple Prime Theorem, Odd Prime Numbers, Commutative Law of Addition, Associative Law


證明:


根據(jù)2013年秘魯數(shù)學(xué)家哈羅德·賀歐夫格特已經(jīng)徹底地證明了的三素?cái)?shù)定理:


每個(gè)大于等于9的奇數(shù)都是三個(gè)奇素?cái)?shù)之和,每個(gè)奇素?cái)?shù)都可以重復(fù)使用。


它用下列公式表示:Q是每個(gè)≥9的奇數(shù),奇素?cái)?shù):q1≥3,q2≥3,q3≥3,


則Q=q1+q2+q3 根據(jù)加法交換律結(jié)合律,不妨設(shè):q1≥q2≥q3≥3,


則Q-3=q1+q2+q3-3 顯見:有且僅有q3=3時(shí),Q-3=q1+q2,否則,奇數(shù)9,11,13都是三素?cái)?shù)定理的反例。


即每個(gè)大于等于6的偶數(shù)都是兩個(gè)奇素?cái)?shù)之和


推論Q=3+q1+q2,即每個(gè)大于等于9的奇數(shù)都是3+兩個(gè)奇素?cái)?shù)之和。


我們運(yùn)用數(shù)學(xué)歸納法做如下證明:


給出首項(xiàng)為9,公差為2的等差數(shù)列:Qn=7+2n:{9,11,13,15,17,.....}


Q1= 9


Q2= 11


Q3= 13


Q4= 15

.......


Qn=7+2n=3+q1+q2,(其中奇素?cái)?shù)q1≥q2≥3,奇數(shù)Qn≥9,n為正整數(shù))


數(shù)學(xué)歸納法:


第一步:當(dāng)n=1時(shí) ,Q1=9 時(shí) ,Q1=9=3+q1+q2=3+3+3成立


第二步:假設(shè) :n=k時(shí),Qk=3+qk1+qk2,奇素?cái)?shù):qk1≥3,qk2≥3,成立。


第三步:當(dāng)n=k+1時(shí),Q(k+1)=Qk+2=3+qk1+qk2+2=5+qk1+qk2


此時(shí)Qk+2=Q(k+1)=5+qk1+qk2


即每個(gè)大于等于11的奇數(shù)都是5+兩個(gè)奇素?cái)?shù)之和,從而每個(gè)大于等于6的偶數(shù)都是兩個(gè)奇素?cái)?shù)之和。


而這個(gè)結(jié)論與“每個(gè)大于等于9的奇數(shù)都是3+兩個(gè)奇素?cái)?shù)之和”是等價(jià)的


即:Qk+2=3+qk1+qk2+2=5+qk1+qk2=3+qk3+qk4,奇素?cái)?shù):qk3≥3,qk4≥3


故:Qk+2=3+qk3+qk4,奇素?cái)?shù):qk3≥3,qk4≥3


綜上所述,對于任意正整數(shù)n命題均成立,即:每個(gè)大于等于9的奇數(shù)都是3+兩個(gè)奇素?cái)?shù)之和


同時(shí),每個(gè)大于等于11的奇數(shù)Q=3+p1+p2=5+p3+p4,(p1,p2,p3,p4均為奇素?cái)?shù))


結(jié)論:每個(gè)大于等于9的奇數(shù)都是3+兩個(gè)奇素?cái)?shù)之和,Q=3+q1+q2,(奇素?cái)?shù)q1≥q2≥3,奇數(shù)Q≥9)


參考文獻(xiàn):


[1]Major Arcs for Goldbach's Theorem. Arxiv [Reference date 2013-12-18]


[2] Minor arcs for Goldbach's problem.Arxiv [Reference date 2013-12-18]

【眉山論道】都知道“薛定諤的貓”,但很少人知道薛定諤奠基了復(fù)雜科學(xué)的評(píng)論 (共 條)

分享到微博請遵守國家法律
麻栗坡县| 紫云| 深圳市| 安丘市| 兴业县| 罗定市| 安仁县| 淮南市| 固始县| 芦山县| 县级市| 鄱阳县| 甘谷县| 普兰县| 邵阳市| 海城市| 淳安县| 黄梅县| 鄂尔多斯市| 兰西县| 淮南市| 天门市| 手机| 利川市| 辛集市| 汕尾市| 高平市| 陆河县| 乡城县| 黄浦区| 龙海市| 双鸭山市| 大余县| 张家口市| 廉江市| 平谷区| 诸暨市| 柳林县| 龙游县| 靖远县| 偏关县|