最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

抗衰老從細(xì)胞做起?最全飲食干預(yù)細(xì)胞衰老盤點(diǎn)來襲!

2022-08-22 09:48 作者:時(shí)光派官方  | 我要投稿


編者按

自古代以來,不論壽命長短,每個(gè)人都有一個(gè)“長生不老”的夢想,而這份夢想投射到現(xiàn)代的科學(xué)社會,就變成了一個(gè)個(gè)抗衰研究。

而“細(xì)胞衰老學(xué)說”也是眾多的抗衰學(xué)說中的一個(gè),它在上個(gè)世紀(jì)剛提出的時(shí)候一度成為主流[1],后來卻又因?yàn)楦鞣N新機(jī)制的發(fā)現(xiàn),漸漸被科研前進(jìn)的洪流吞沒。如今“沉舟側(cè)畔千帆過”后,細(xì)胞衰老又一次走進(jìn)大眾的視野,成為最重要的衰老理論之一[2]。

而和“經(jīng)歷坎坷”的細(xì)胞衰老理論一樣,抗衰的盡頭還是生活,看過了那么多的藥物才發(fā)現(xiàn),生活才是最好的“干預(yù)”。

這篇飲食抗衰的綜述,就為大家詳細(xì)介紹了各種飲食成分和補(bǔ)劑對衰老細(xì)胞的作用。就讓小編帶著大家一起,看看怎么才能通過飲食延長壽命、健康衰老[3]。






早在1961年,就有科學(xué)家發(fā)現(xiàn)了細(xì)胞衰老的現(xiàn)象[4],但是在當(dāng)時(shí),這只是一種相對表面的推測。經(jīng)過60多年的沉淀和探索,細(xì)胞衰老的理念歷經(jīng)沉浮,終于浮出水面。

人衰老了以后就會產(chǎn)生各種各樣的虛弱和病痛,并漸漸喪失工作的能力,而細(xì)胞的衰老也和人一樣。

當(dāng)細(xì)胞衰老了以后,就會積累各種損傷:端粒縮短和損傷、染色質(zhì)結(jié)構(gòu)改變、DNA 損傷和活性氧 (ROS) 積累、細(xì)胞周期抑制途徑和β-半乳糖苷酶表達(dá)增加等,然后失去工作的能力:增殖分裂[5]。


圖注:健康細(xì)胞在積累了大量“損傷”之后成為衰老細(xì)胞

雖然說細(xì)胞衰老是一個(gè)正常的生理過程,并且在傷口愈合、胚胎發(fā)育等過程中發(fā)揮著不可替代的作用[6-7],但是瑜不掩瑕,衰老細(xì)胞的危害遠(yuǎn)比作用大:

衰老細(xì)胞不僅不能貢獻(xiàn)新細(xì)胞出來,還會通過分泌SASP(促炎性因子等)來“感染”周圍的細(xì)胞,誘導(dǎo)“二次衰老”[9]。在各種組織和器官中都發(fā)現(xiàn),衰老細(xì)胞的積累與疾病以及整個(gè)機(jī)體死亡風(fēng)險(xiǎn)的增加相關(guān)[8]。

同時(shí),老年個(gè)體因?yàn)槊庖呦到y(tǒng)功能的降低,不足以清除所有衰老細(xì)胞,而衰老細(xì)胞的存在又會讓免疫系統(tǒng)持續(xù)老化,細(xì)胞衰老和機(jī)體衰老互相促進(jìn),惡性循環(huán)[10]。


圖注:衰老細(xì)胞對機(jī)體的影響

衰老細(xì)胞在我們看不到的地方默默“搞事情”,在整個(gè)生物體的衰老過程中推波助瀾,那我們怎么才能悄悄“報(bào)復(fù)”回去呢?






其實(shí)“打擊”衰老細(xì)胞很簡單,健康的飲食就可以瞄準(zhǔn)細(xì)胞衰老“開炮”,促進(jìn)健康和長壽。

首先出場的是第一梯隊(duì),“元老級”營養(yǎng)素:碳水化合物、蛋白質(zhì)和脂肪

碳水化合物。雖然在大多數(shù)人的印象里,普通糖類在攝入過多時(shí),會通過促進(jìn)與年齡相關(guān)的糖尿病等加速衰老[11]。

但是!碳水化合物中其實(shí)還有不少不可忽視的“專精尖糖才”——多糖。從黃芪、不老莓、當(dāng)歸、枸杞等植物中提取出來的多糖可以通過調(diào)節(jié)mTOR/AMPK/SIRT1/NF-κB通路、抗氧化、減少SASP的表達(dá)等來打擊衰老細(xì)胞[12-13]。


圖注:多糖的廣泛抗衰功效

蛋白質(zhì)。和碳水“路人緣差”不一樣的是,蛋白質(zhì)一直廣受“推崇”,尤其備受健身人士的喜愛,但是恰恰相反,高蛋白飲食反而會降低血漿中的NAD+水平,并促進(jìn)炎性反應(yīng)從而促進(jìn)衰老[14]。

不過,就像碳水化合物一樣,蛋白質(zhì)也有自己的“秘密武器”——BCAA(亮氨酸、異亮氨酸、纈氨酸)。BCAA能一定程度上緩解ROS介導(dǎo)的氧化,以及起到保護(hù)端粒和改善線粒體生成等功能[15](注:雖然本文中提到了BCAA的抗衰效果,但是也有不少研究探究了BCAA的促衰性[16],屏幕前的大家還是要謹(jǐn)慎判斷)。


圖注:低蛋白飲食才更能減緩衰老

脂質(zhì)。與碳水和蛋白需要“特殊成員加持”不一樣的是,脂質(zhì),準(zhǔn)確來說是其中的多不飽和脂肪酸,在維持生長和延緩衰老方面的關(guān)鍵作用早已得到了充分認(rèn)可[17],主要集中體現(xiàn)在抗炎和延長端粒兩個(gè)方面。像omega-3脂肪酸和海洋n-3脂肪酸(魚油)等,均能發(fā)揮強(qiáng)大的抗衰效果[18-19]。


圖注:多不飽和脂肪酸的抗衰作用

看完了三大基礎(chǔ)營養(yǎng)素,接下來向我們走來的則是一支“特種隊(duì)伍”——膳食補(bǔ)劑,其中主要包括了維生素和礦物質(zhì)等。和基礎(chǔ)營養(yǎng)素隊(duì)伍不同,補(bǔ)劑的隊(duì)列(攝入量)非常精簡,但是隊(duì)伍里各個(gè)都是“人才”,能在抗擊衰老細(xì)胞的“戰(zhàn)斗”中提供“強(qiáng)化打擊”。

首先是維生素小隊(duì)。

維生素D:能夠上調(diào)由pAMPKα / SIRT1 / FOXO3a復(fù)合活性調(diào)節(jié)介導(dǎo)的IL-10和FOXO3a(長壽基因之一)表達(dá),并增加端粒長度[20];

維生素E:具有強(qiáng)大的抗氧化活性,緩解細(xì)胞衰老[21];

維生素B2:能促進(jìn)線粒體能量穩(wěn)態(tài),維持細(xì)胞功能[22];

其次是礦物質(zhì)小隊(duì)。

鎂:能增強(qiáng)線粒體功能并防止氧化應(yīng)激[23];

鋅:能調(diào)節(jié)免疫系統(tǒng),減少炎性衰老[24];


再接下來是多酚小隊(duì)。

多酚是一種常見于漿果、綠茶的物質(zhì),像藍(lán)莓啊葡萄啊茶葉啊都富含多酚[25]。多酚主要通過調(diào)節(jié)幾種細(xì)胞信號通路(如NRF2,NF-κB,mTOR,Sirtuins)以及自噬、免疫調(diào)節(jié)、細(xì)胞增殖和細(xì)胞凋亡等關(guān)鍵途徑來減緩細(xì)胞衰老[26]。

同時(shí),多酚中還有很大一部分具有“點(diǎn)對點(diǎn)”功效:衰老細(xì)胞清除劑Senolytics[27]。從槲皮素到茶多酚EGCG再到最近大火的葡萄籽成分PCC1,都能“戰(zhàn)斗”在清除衰老細(xì)胞的第一線。

當(dāng)然隊(duì)伍里還有一些其他補(bǔ)劑,如益生菌等,能改善腸道生態(tài)失調(diào),通過抑制腸道炎癥來緩解細(xì)胞衰老和SASP的分泌[28]。



時(shí)光派點(diǎn)評


“日啖荔枝三百顆,不辭長作嶺南人”,古人想借由飲食健康長壽,時(shí)至今日,人們也仍然在探究簡單的飲食干預(yù)對衰老的影響。

讀完本文,我們知道了什么是細(xì)胞衰老,以及日常飲食是怎樣影響它的。但是我們究竟怎么吃才能更健康、更長壽?這還得看今年《Cell》的另一篇飲食綜述《Nutrition, longevity and disease: From molecular mechanisms to interventions》[29],文中提出了一款最新的科學(xué)食譜,能讓每個(gè)照著吃的人最高延壽13年(詳見文末“猜你想看”)。

通過這篇飲食抗衰綜述我們也可以大膽展望,說不定在不久的將來,人們都可以將“抗衰”融入到生活,通過簡簡單單的飲食、運(yùn)動、作息等,就能收獲健康和長壽。


—— TIMEPIE ——

參考文獻(xiàn)

[1] Cristofalo, V. J., Lorenzini, A., Allen, R. G., Torres, C., & Tresini, M. (2004). Replicative senescence: a critical review. Mechanisms of ageing and development, 125(10-11), 827–848. https://doi.org/10.1016/j.mad.2004.07.010

[2] López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

[3] Diwan, B., & Sharma, R. (2022). Nutritional components as mitigators of cellular senescence in organismal aging: a comprehensive review. Food science and biotechnology, 31(9), 1089–1109. https://doi.org/10.1007/s10068-022-01114-y

[4] HAYFLICK, L., & MOORHEAD, P. S. (1961). The serial cultivation of human diploid cell strains. Experimental cell research, 25, 585–621. https://doi.org/10.1016/0014-4827(61)90192-6

[5] Campisi J. (2013). Aging, cellular senescence, and cancer. Annual review of physiology, 75, 685–705. https://doi.org/10.1146/annurev-physiol-030212-183653

[6] Demaria, M., Ohtani, N., Youssef, S. A., Rodier, F., Toussaint, W., Mitchell, J. R., Laberge, R. M., Vijg, J., Van Steeg, H., Dollé, M. E., Hoeijmakers, J. H., de Bruin, A., Hara, E., & Campisi, J. (2014). An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Developmental cell, 31(6), 722–733. https://doi.org/10.1016/j.devcel.2014.11.012

[7] Mu?oz-Espín, D., Ca?amero, M., Maraver, A., Gómez-López, G., Contreras, J., Murillo-Cuesta, S., Rodríguez-Baeza, A., Varela-Nieto, I., Ruberte, J., Collado, M., & Serrano, M. (2013). Programmed cell senescence during mammalian embryonic development. Cell, 155(5), 1104–1118. https://doi.org/10.1016/j.cell.2013.10.019

[8] Yousefzadeh, M. J., Zhao, J., Bukata, C., Wade, E. A., McGowan, S. J., Angelini, L. A., Bank, M. P., Gurkar, A. U., McGuckian, C. A., Calubag, M. F., Kato, J. I., Burd, C. E., Robbins, P. D., & Niedernhofer, L. J. (2020). Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice. Aging cell, 19(3), e13094. https://doi.org/10.1111/acel.13094

[9] Furman, D., Chang, J., Lartigue, L., Bolen, C. R., Haddad, F., Gaudilliere, B., Ganio, E. A., Fragiadakis, G. K., Spitzer, M. H., Douchet, I., Daburon, S., Moreau, J. F., Nolan, G. P., Blanco, P., Déchanet-Merville, J., Dekker, C. L., Jojic, V., Kuo, C. J., Davis, M. M., & Faustin, B. (2017). Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nature medicine, 23(2), 174–184. https://doi.org/10.1038/nm.4267

[10] Kale, A., Sharma, A., Stolzing, A., Desprez, P. Y., & Campisi, J. (2020). Role of immune cells in the removal of deleterious senescent cells. Immunity & ageing : I & A, 17, 16. https://doi.org/10.1186/s12979-020-00187-9

[11] Feinman, R. D., Pogozelski, W. K., Astrup, A., Bernstein, R. K., Fine, E. J., Westman, E. C., Accurso, A., Frassetto, L., Gower, B. A., McFarlane, S. I., Nielsen, J. V., Krarup, T., Saslow, L., Roth, K. S., Vernon, M. C., Volek, J. S., Wilshire, G. B., Dahlqvist, A., Sundberg, R., Childers, A., … Worm, N. (2015). Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base. Nutrition (Burbank, Los Angeles County, Calif.), 31(1), 1–13. https://doi.org/10.1016/j.nut.2014.06.011

[12] Miao, X. Y., Zhu, X. X., Gu, Z. Y., Fu, B., Cui, S. Y., Zu, Y., Rong, L. J., Hu, F., Chen, X. M., Gong, Y. P., & Li, C. L. (2022). Astragalus Polysaccharides Reduce High-glucose-induced Rat Aortic Endothelial Cell Senescence and Inflammasome Activation by Modulating the Mitochondrial Na+/Ca2+ Exchanger. Cell biochemistry and biophysics, 80(2), 341–353. https://doi.org/10.1007/s12013-021-01058-w

[13] Zhao, Y., Liu, X., Zheng, Y., Liu, W., & Ding, C. (2021). Aronia melanocarpa polysaccharide ameliorates inflammation and aging in mice by modulating the AMPK/SIRT1/NF-κB signaling pathway and gut microbiota. Scientific reports, 11(1), 20558. https://doi.org/10.1038/s41598-021-00071-6

[14] Seyedsadjadi, N., Berg, J., Bilgin, A. A., Braidy, N., Salonikas, C., & Grant, R. (2018). High protein intake is associated with low plasma NAD+ levels in a healthy human cohort. PloS one, 13(8), e0201968. https://doi.org/10.1371/journal.pone.0201968

[15] D'Antona, G., Ragni, M., Cardile, A., Tedesco, L., Dossena, M., Bruttini, F., Caliaro, F., Corsetti, G., Bottinelli, R., Carruba, M. O., Valerio, A., & Nisoli, E. (2010). Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell metabolism, 12(4), 362–372. https://doi.org/10.1016/j.cmet.2010.08.016

[16] Campisi, J., Kapahi, P., Lithgow, G. J., Melov, S., Newman, J. C., & Verdin, E. (2019). From discoveries in ageing research to therapeutics for healthy ageing. Nature, 571(7764), 183–192. https://doi.org/10.1038/s41586-019-1365-2

[17] Lai, H. T., de Oliveira Otto, M. C., Lemaitre, R. N., McKnight, B., Song, X., King, I. B., Chaves, P. H., Odden, M. C., Newman, A. B., Siscovick, D. S., & Mozaffarian, D. (2018). Serial circulating omega 3 polyunsaturated fatty acids and healthy ageing among older adults in the Cardiovascular Health Study: prospective cohort study. BMJ (Clinical research ed.), 363, k4067. https://doi.org/10.1136/bmj.k4067

[18] Rodacki, C. L., Rodacki, A. L., Pereira, G., Naliwaiko, K., Coelho, I., Pequito, D., & Fernandes, L. C. (2012). Fish-oil supplementation enhances the effects of strength training in elderly women. The American journal of clinical nutrition, 95(2), 428–436. https://doi.org/10.3945/ajcn.111.021915

[19] Chen, J., Wei, Y., Chen, X., Jiao, J., & Zhang, Y. (2017). Polyunsaturated fatty acids ameliorate aging via redox-telomere-antioncogene axis. Oncotarget, 8(5), 7301–7314. https://doi.org/10.18632/oncotarget.14236

[20] Chen, L., Holder, R., Porter, C., & Shah, Z. (2021). Vitamin D3 attenuates doxorubicin-induced senescence of human aortic endothelial cells by upregulation of IL-10 via the pAMPKα/Sirt1/Foxo3a signaling pathway. PloS one, 16(6), e0252816. https://doi.org/10.1371/journal.pone.0252816

[21] Corina, A., Rangel-Zú?iga, O. A., Jiménez-Lucena, R., Alcalá-Díaz, J. F., Quintana-Navarro, G., Yubero-Serrano, E. M., López-Moreno, J., Delgado-Lista, J., Tinahones, F., Ordovás, J. M., López-Miranda, J., & Pérez-Martínez, P. (2019). Low Intake of Vitamin E Accelerates Cellular Aging in Patients With Established Cardiovascular Disease: The CORDIOPREV Study. The journals of gerontology. Series A, Biological sciences and medical sciences, 74(6), 770–777. https://doi.org/10.1093/gerona/gly195

[22] Nagano, T., Awai, Y., Kuwaba, S., Osumi, T., Mio, K., Iwasaki, T., & Kamada, S. (2021). Riboflavin transporter SLC52A1, a target of p53, suppresses cellular senescence by activating mitochondrial complex II. Molecular biology of the cell, 32(21), br10. https://doi.org/10.1091/mbc.E21-05-0262

[23] Villa-Bellosta R. (2020). Dietary magnesium supplementation improves lifespan in a mouse model of progeria. EMBO molecular medicine, 12(10), e12423. https://doi.org/10.15252/emmm.202012423

[24] Giacconi, R., Costarelli, L., Piacenza, F., Basso, A., Bürkle, A., Moreno-Villanueva, M., Grune, T., Weber, D., Stuetz, W., Gonos, E. S., Sch?n, C., Grubeck-Loebenstein, B., Sikora, E., Toussaint, O., Debacq-Chainiaux, F., Franceschi, C., Hervonen, A., Slagboom, E., Ciccarone, F., Zampieri, M., … Malavolta, M. (2018). Zinc-Induced Metallothionein in Centenarian Offspring From a Large European Population: The MARK-AGE Project. The journals of gerontology. Series A, Biological sciences and medical sciences, 73(6), 745–753. https://doi.org/10.1093/gerona/glx192

[25] Shimizu, C., Wakita, Y., Inoue, T., Hiramitsu, M., Okada, M., Mitani, Y., Segawa, S., Tsuchiya, Y., & Nabeshima, T. (2019). Effects of lifelong intake of lemon polyphenols on aging and intestinal microbiome in the senescence-accelerated mouse prone 1 (SAMP1). Scientific reports, 9(1), 3671. https://doi.org/10.1038/s41598-019-40253-x

[26] Cory, H., Passarelli, S., Szeto, J., Tamez, M., & Mattei, J. (2018). The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Frontiers in nutrition, 5, 87. https://doi.org/10.3389/fnut.2018.00087

[27] Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A. C., Ding, H., Giorgadze, N., Palmer, A. K., Ikeno, Y., Hubbard, G. B., Lenburg, M., O'Hara, S. P., LaRusso, N. F., Miller, J. D., Roos, C. M., Verzosa, G. C., LeBrasseur, N. K., Wren, J. D., Farr, J. N., Khosla, S., Stout, M. B., … Kirkland, J. L. (2015). The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging cell, 14(4), 644–658. https://doi.org/10.1111/acel.12344

[28] Kumar, R., Sharma, A., Gupta, M., Padwad, Y., & Sharma, R. (2020). Cell-Free Culture Supernatant of Probiotic Lactobacillus fermentum Protects Against H2O2-Induced Premature Senescence by Suppressing ROS-Akt-mTOR Axis in Murine Preadipocytes. Probiotics and antimicrobial proteins, 12(2), 563–576. https://doi.org/10.1007/s12602-019-09576-z

[29] Longo, V. D., & Anderson, R. M. (2022). Nutrition, longevity and disease: From molecular mechanisms to interventions. Cell, 185(9), 1455–1470. https://doi.org/10.1016/j.cell.2022.04.002

抗衰老從細(xì)胞做起?最全飲食干預(yù)細(xì)胞衰老盤點(diǎn)來襲!的評論 (共 條)

分享到微博請遵守國家法律
阿拉尔市| 遵化市| 普安县| 广宁县| 东港市| 象山县| 石渠县| 乌鲁木齐市| 铜山县| 郸城县| 临颍县| 鱼台县| 延庆县| 托里县| 浪卡子县| 苍溪县| 西和县| 基隆市| 阿图什市| 昭通市| 项城市| 蕉岭县| 晋宁县| 石棉县| 稷山县| 将乐县| 潞西市| 五常市| 荆州市| 宁夏| 遵义县| 商南县| 鹿泉市| 新绛县| 盖州市| 长子县| 吴江市| 会理县| 玛曲县| 奇台县| 长岛县|