最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

偏微分方程?

2023-06-23 10:24 作者:編程會(huì)一點(diǎn)建模不太懂  | 我要投稿

題目選自2022年考研數(shù)學(xué)二

已知可微函數(shù)f(u%2Cv)滿足:

%5Cfrac%7B%5Cpartial%20f%5Cleft(%20u%2Cv%20%5Cright)%7D%7B%5Cpartial%20u%7D-%5Cfrac%7B%5Cpartial%20f%5Cleft(%20u%2Cv%20%5Cright)%7D%7B%5Cpartial%20v%7D%3D2%5Cleft(%20u-v%20%5Cright)%20e%5E%7B-%5Cleft(%20u%2Bv%20%5Cright)%7D

f%5Cleft(%20u%2C0%20%5Cright)%20%3Du%5E2e%5E%7B-u%7D

(1)記g(x%2Cy)%3Df(x%2Cy-x),求%5Cfrac%7B%5Cpartial%20g%5Cleft(%20x%2Cy%20%5Cright)%7D%7B%5Cpartial%20x%7D

(2)求函數(shù)f(u%2Cv)表達(dá)式和極值

解:(1)令u%3Dx%2Cv%3Dy-x

%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D%3D1%2C%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20x%7D%3D-1

所以

%5Cfrac%7B%5Cpartial%20g%5Cleft(%20x%2Cy%20%5Cright)%7D%7B%5Cpartial%20x%7D%3D%5Cfrac%7B%5Cpartial%20f%5Cleft(%20x%2Cy-x%20%5Cright)%7D%7B%5Cpartial%20x%7D

%3D%5Cfrac%7B%5Cpartial%20f%5Cleft(%20u%2Cv%20%5Cright)%7D%7B%5Cpartial%20u%7D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D%2B%5Cfrac%7B%5Cpartial%20f%5Cleft(%20u%2Cv%20%5Cright)%7D%7B%5Cpartial%20v%7D%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20x%7D%0A

%3D%5Cfrac%7B%5Cpartial%20f%5Cleft(%20u%2Cv%20%5Cright)%7D%7B%5Cpartial%20u%7D-%5Cfrac%7B%5Cpartial%20f%5Cleft(%20u%2Cv%20%5Cright)%7D%7B%5Cpartial%20v%7D%0A

%3D2%5Cleft(%20u-v%20%5Cright)%20e%5E%7B-%5Cleft(%20u%2Bv%20%5Cright)%7D%0A

%3D2%5Cleft(%202x-y%20%5Cright)%20e%5E%7B-y%7D%0A

(2)因?yàn)?/p>

%5Cfrac%7B%5Cpartial%20g%5Cleft(%20x%2Cy%20%5Cright)%7D%7B%5Cpartial%20x%7D%3D2%5Cleft(%202x-y%20%5Cright)%20e%5E%7B-y%7D

對(duì)x積分得到

g%5Cleft(%20x%2Cy%20%5Cright)%20%3D2%5Cleft(%20x%5E2-xy%20%5Cright)%20e%5E%7B-y%7D%2Bh%5Cleft(%20y%20%5Cright)%20

因?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=g(x%2Cy)%3Df(x%2Cy-x)" alt="g(x%2Cy)%3Df(x%2Cy-x)">

%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09u%3Dx%5C%5C%0A%09v%3Dy-x%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20%5CRightarrow%20%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09x%3Du%5C%5C%0A%09y%3Du%2Bv%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20%5CRightarrow%20f%5Cleft(%20u%2Cv%20%5Cright)%20%3D-2uve%5E%7B-%5Cleft(%20u%2Bv%20%5Cright)%7D%2Bh%5Cleft(%20u%2Bv%20%5Cright)%20

f%5Cleft(%20u%2C0%20%5Cright)%20%3Dh%5Cleft(%20u%20%5Cright)%20%3Du%5E2e%5E%7B-u%7D%0A

所以

f%5Cleft(%20u%2Cv%20%5Cright)%20%3D%5Cleft(%20u%2Bv%20%5Cright)%20%5E2e%5E%7B-%5Cleft(%20u%2Bv%20%5Cright)%7D-2uve%5E%7B-%5Cleft(%20u%2Bv%20%5Cright)%7D%3D%5Cleft(%20u%5E2%2Bv%5E2%20%5Cright)%20e%5E%7B-%5Cleft(%20u%2Bv%20%5Cright)%7D

%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D%3De%5E%7B-%5Cleft(%20u%2Bv%20%5Cright)%7D%5Cleft(%202u-u%5E2-v%5E2%20%5Cright)%5C%5C%0A%09%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20v%7D%3De%5E%7B-%5Cleft(%20u%2Bv%20%5Cright)%7D%5Cleft(%202v-v%5E2-u%5E2%20%5Cright)%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20

%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D%3D0%5C%5C%0A%09%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20v%7D%3D0%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20%5CRightarrow%20%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09u%3D0%5C%5C%0A%09v%3D0%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20%5Ctext%7B%E6%88%96%7D%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09u%3D1%5C%5C%0A%09v%3D1%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20

當(dāng)%5Cleft(%20u%2Cv%20%5Cright)%20%3D%5Cleft(%200%2C0%20%5Cright)時(shí)

A%3D%5Cfrac%7B%5Cpartial%20%5E2f%7D%7B%5Cpartial%20u%5E2%7D%3D%5Cunderset%7Bu%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D%5Cmid_%7B%5Cleft(%20u%2C0%20%5Cright)%7D%5E%7B%7D-%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D%5Cmid_%7B%5Cleft(%200%2C0%20%5Cright)%7D%5E%7B%7D%7D%7Bu%7D

%3D%5Cunderset%7Bu%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7Be%5E%7B-u%7D%5Cleft(%202u-u%5E2%20%5Cright)%7D%7Bu%7D%3D2%0A

B%3D%5Cfrac%7B%5Cpartial%20%5E2f%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%3D%5Cunderset%7Bv%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D%5Cmid_%7B%5Cleft(%200%2Cv%20%5Cright)%7D%5E%7B%7D-%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D%5Cmid_%7B%5Cleft(%200%2C0%20%5Cright)%7D%5E%7B%7D%7D%7Bv%7D

%3D%5Cunderset%7Bv%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B-e%5E%7B-v%7Dv%5E2%7D%7Bv%7D%3D0%0A

C%3D%5Cfrac%7B%5Cpartial%20%5E2f%7D%7B%5Cpartial%20v%5E2%7D%3D%5Cunderset%7Bv%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20v%7D%5Cmid_%7B%5Cleft(%200%2Cv%20%5Cright)%7D%5E%7B%7D-%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20v%7D%5Cmid_%7B%5Cleft(%200%2C0%20%5Cright)%7D%5E%7B%7D%7D%7Bv%7D

%3D%5Cunderset%7Bv%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7Be%5E%7B-v%7D%5Cleft(%202v-v%5E2%20%5Cright)%7D%7Bv%7D%3D2%0A

A%3D2%3E0%2CAC-B%5E2%3D4%3E0

所以(0%2C0)為極小值點(diǎn)

當(dāng)%5Cleft(%20u%2Cv%20%5Cright)%20%3D%5Cleft(%201%2C1%20%5Cright)時(shí)

A%3D%5Cfrac%7B%5Cpartial%20%5E2f%7D%7B%5Cpartial%20u%5E2%7D%3D%5Cunderset%7B%5CvarDelta%20u%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D%5Cmid_%7B%5Cleft(%201%2B%5CvarDelta%20u%2C1%20%5Cright)%7D%5E%7B%7D-%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D%5Cmid_%7B%5Cleft(%201%2C1%20%5Cright)%7D%5E%7B%7D%7D%7B%5CvarDelta%20u%7D%0A

%3D%5Cunderset%7B%5CvarDelta%20u%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7Be%5E%7B-%5Cleft(%202%2B%5CvarDelta%20u%20%5Cright)%7D%5Cleft(%202%5Cleft(%201%2B%5CvarDelta%20u%20%5Cright)%20-%5Cleft(%201%2B%5CvarDelta%20u%20%5Cright)%20%5E2-1%20%5Cright)%7D%7B%5CvarDelta%20u%7D%0A

%3De%5E%7B-2%7D%5Cunderset%7B%5CvarDelta%20u%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B-%5Cleft(%20%5CvarDelta%20u%20%5Cright)%20%5E2%7D%7B%5CvarDelta%20u%7D%3D0%0A

B%3D%5Cfrac%7B%5Cpartial%20%5E2f%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%3D%5Cunderset%7B%5CvarDelta%20v%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D%5Cmid_%7B%5Cleft(%201%2C1%2B%5CvarDelta%20v%20%5Cright)%7D%5E%7B%7D-%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20u%7D%5Cmid_%7B%5Cleft(%201%2C1%20%5Cright)%7D%5E%7B%7D%7D%7B%5CvarDelta%20v%7D%0A

%3D%5Cunderset%7B%5CvarDelta%20v%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7Be%5E%7B-%5Cleft(%202%2B%5CvarDelta%20v%20%5Cright)%7D%5Cleft(%202-1-%5Cleft(%201%2B%5CvarDelta%20v%20%5Cright)%20%5E2%20%5Cright)%7D%7B%5CvarDelta%20v%7D%0A

%3De%5E%7B-2%7D%5Cunderset%7B%5CvarDelta%20v%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B-2%5CvarDelta%20v-%5Cleft(%20%5CvarDelta%20v%20%5Cright)%20%5E2%7D%7B%5CvarDelta%20v%7D%3D-2e%5E%7B-2%7D%0A

C%3D%5Cfrac%7B%5Cpartial%20%5E2f%7D%7B%5Cpartial%20v%5E2%7D%3D%5Cunderset%7B%5CvarDelta%20v%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20v%7D%5Cmid_%7B%5Cleft(%201%2C1%2B%5CvarDelta%20v%20%5Cright)%7D%5E%7B%7D-%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20v%7D%5Cmid_%7B%5Cleft(%201%2C1%20%5Cright)%7D%5E%7B%7D%7D%7B%5CvarDelta%20v%7D%0A

%3D%5Cunderset%7B%5CvarDelta%20v%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7Be%5E%7B-%5Cleft(%202%2B%5CvarDelta%20v%20%5Cright)%7D%5Cleft(%202%5Cleft(%201%2B%5CvarDelta%20v%20%5Cright)%20-%5Cleft(%201%2B%5CvarDelta%20v%20%5Cright)%20%5E2-1%20%5Cright)%7D%7B%5CvarDelta%20v%7D%0A

%3De%5E%7B-2%7D%5Cunderset%7B%5CvarDelta%20u%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B-%5Cleft(%20%5CvarDelta%20v%20%5Cright)%20%5E2%7D%7B%5CvarDelta%20v%7D%3D0%0A

AC-B%5E2%3D-4e%5E%7B-4%7D%3C0

所以(1%2C1)不是極值點(diǎn)

所以f(u%2Cv)的極小值為f(0%2C0)%3D0

本題選自2022年考研數(shù)學(xué)二,實(shí)際上該題為偏微分方程的定解問題,偏微分方程并不屬于考研數(shù)學(xué)的大綱要求內(nèi)容,但是正如所見,命題人在第一小問給出函數(shù)g(x%2Cy)的提示,將偏微分方程轉(zhuǎn)化為帶關(guān)于x帶參數(shù)y的不定積分的形式,使題目求解成為可能。

這個(gè)題目告訴我們,考研數(shù)學(xué)可能考察一些超綱的知識(shí),包括2022年考研數(shù)學(xué)二中瑞利商和2022年考研數(shù)學(xué)一中條件期望問題等,但是會(huì)給予一定的提示。

當(dāng)然我們?cè)谄綍r(shí)練習(xí)的時(shí)候,在學(xué)有余力的情況下,也可以通過題目去適當(dāng)了解一些,比如本題中考察到的偏微分方程,實(shí)際上,在數(shù)學(xué)系或者一些數(shù)理要求較高的專業(yè)所開設(shè)的偏微分方程課程中,常見的一種處理方法有分離變量法,這種方法就是將二元函數(shù)分解成兩個(gè)函數(shù)乘積的形式,即f(x%2Cy)%3Dg(x)h(y),這樣帶入偏微分方程即可分解成兩個(gè)常微分方程的形式,進(jìn)行求解。

回到本題中,拋開偏微分方程這個(gè)超綱的內(nèi)容,從大綱角度看,本題是一道極具綜合性的題目,從第一小問的偏微分變換,到帶關(guān)于x帶參數(shù)y的不定積分求解,最終確定二元函數(shù)并求解極值,總體上,考察了3-4個(gè)知識(shí)點(diǎn)。

在二元函數(shù)極值求解及判斷的計(jì)算過程中,不建議直接求二階偏導(dǎo)數(shù),因?yàn)閷?duì)于待定的極值點(diǎn),其一階偏導(dǎo)數(shù)必為0,所以在求對(duì)應(yīng)點(diǎn)的二階偏導(dǎo)數(shù)時(shí),可以通過導(dǎo)數(shù)定義的方法求解,這樣計(jì)算量會(huì)減小,雖然,我前面所寫的用定義求二階偏導(dǎo)數(shù)過程好像內(nèi)容比較多,但是實(shí)際上比直接帶參數(shù)x,y直接求更不容易出錯(cuò)。

偏微分方程?的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
阿拉善左旗| 丽水市| 水城县| 舞钢市| 鹤庆县| 南澳县| 武胜县| 定西市| 夏津县| 自贡市| 长阳| 朝阳市| 鄂尔多斯市| 东台市| 南涧| 禄丰县| 扬州市| 射阳县| 齐齐哈尔市| 大兴区| 库车县| 沙雅县| 盘山县| 克山县| 且末县| 毕节市| 思南县| 贵南县| 平阳县| 木里| 新龙县| 永福县| 沙湾县| 滦南县| 利川市| 岫岩| 田阳县| 阜新市| 天镇县| 宁波市| 惠安县|